NASA TECHNICAL NOTE

NASA TN D-7752

PROGRAM AND CHARTS FOR DETERMINING SHOCK TUBE, EXPANSION TUBE, AND EXPANSION TUNNEL FLOW QUANTITIES FOR REAL AIR

by Charles G. Miller III and Sue E. Wilder

Langley Research Center

Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1975

1. Report No. NASA TN D-7752	2. Government Accession No.		3. Recipie	nt's Catalog No.
4, Title and Subtitle			5. Report	
DROCRAM AND CHARTS FOR DETERMINING SHOCK		K T	,	oruary 1975
EXPANSION TUBE, AND EXPANSION TUNNEL FLOW QUANTITIES FOR REAL AIR			6. Perform	ning Organization Code
7. Author(s)			8. Perforn	ning Organization Report No.
Charles G. Miller III and Su	e E. Wilder		L-9	9700
Charles G. Willer III and be			10. Work t	Jnit No.
9. Performing Organization Name and Address			502	2-27-02-01
NASA Langley Research Ce	nter		11 Contra	ct or Grant No.
Hampton, Va. 23665			11. 00	
manipton, va. 20005			40 7	of Report and Period Covered
				chnical Note
12. Sponsoring Agency Name and Address				
National Aeronautics and Sp	pace Administration		14. Sponso	oring Agency Code
Washington, D.C. 20546				
15. Supplementary Notes				
, , , , , , , , , , , , , , , , , , , ,				
				•
16. Abstract				
program permits, as input erally measured during a t of such effects as a standin thermochemical-equilibriu tube and expansion tunnel, the expansion tube, real air on the acceleration section tube performance prior to	est. The versatility of the graph of the standard of the standard of the flow in as the acceleration gas a fair flow. Charts which	the prock a czen i trav , and	ogram is enhand t the secondary low expansion for ersing the accel the effect of wa	ced by the inclusion diaphragm, or the expansion eration section of all boundary layer
	•		<u> </u>	
17. Key Words (Suggested by Author(s))	18. D	istributi	on Statement	
Shock tube		TT T		oitad
Expansion tube Expansion tunnel		uncla	issified - Unlin	Incu
Unsteady expansion				
Real air				STAR Category 1
		1	04. No. of D	22. Price*
1 10, 0000,	20. Security Classif, (of this page)	Ì	21. No. of Pages 278	\$8.75
Unclassified	Unclassified		410	40.10

PROGRAM AND CHARTS FOR DETERMINING SHOCK TUBE, EXPANSION TUBE, AND EXPANSION TUNNEL FLOW QUANTITIES FOR REAL AIR

By Charles G. Miller III and Sue E. Wilder Langley Research Center

SUMMARY

A computer program written in FORTRAN IV language is presented which determines shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. For the shock tube phase of the program, flow conditions behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of shock reflection at the secondary diaphragm of the expansion tube, resulting in a standing or a totally reflected shock, is included. Expansion tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from conditions behind the incident shock, standing shock, or totally reflected shock to either the test region velocity or static pressure. Expansion tunnel test-section flow conditions are obtained by performing an isentropic steady expansion from expansion tube free-stream conditions to either the nozzle test region velocity or static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion for the expansion tube and expansion tunnel are included. The effect of flow attenuation along the acceleration section of the expansion tube is included for an equilibrium expansion. Flow conditions immediately behind the bow shock of a model positioned at the test section of a shock tube, expansion tube, or expansion tunnel are determined. A listing of the computer program is presented along with a description of inputs required and samples of the data printout. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

INTRODUCTION

Experimental studies using air as the test gas have been initiated in the Langley 6-inch expansion tube, and a number of studies are expected to be performed in the Langley expansion tunnel. Prior to performing studies in these facilities, it is essential for the investigator to ascertain the theoretical performance of the facility because of the

wide range of flow conditions which may be generated and the very short test times (less than 300 μ sec or so) which place stringent requirements on facility instrumentation. Thus, a knowledge of the magnitude of physical quantities to be measured is required. After a test, a convenient means for determining expansion tube and expansion tunnel flow conditions from measured quantities is desirable. Although a number of theoretical studies have been directed toward prediction of expansion tube and expansion tunnel performance with air as the test gas (for example, refs. 1 to 4), these studies were primarily concerned with simulation or duplication of conditions experienced by high-velocity, earthentry vehicles.

The primary purposes of the present study are (1) to furnish a convenient, versatile, accurate computer program for determining shock tube, expansion tube, and expansion tunnel flow quantities in real air from combinations of measured flow quantities and (2) to provide charts for rapid estimation of facility performance prior to a test. This program is similar to the real-gas mixture study of reference 5; however, a number of differences exist between these two programs. The present program requires much less computer time, with no appreciable sacrifice in accuracy, than the program of reference 5. Such a reduction in computer time is a significant factor in data reduction, since most of the testing in the Langley 6-inch expansion tube is performed with air as the test gas.

Operating experience with the Langley 6-inch expansion tube and operation of this expansion tube as a shock tube demonstrated the desirability for options other than those presented in reference 5. Results included herein, but not in reference 5, are (1) charts illustrating predicted shock tube performance with hydrogen and helium driver gases for a range of driver gas pressure and temperature, (2) a totally reflected shock, as well as a standing shock, at the secondary diaphragm, (3) real air as the acceleration gas, (4) the effect of wall boundary layer on shock tube and acceleration section air flow for laminar (ref. 6) and/or turbulent (ref. 7) boundary layers, (5) the effect of flow attenuation along the acceleration section, (6) imperfect (intermolecular) air effects permitting calculations at higher pressures than permissible with reference 5, (7) determination of expansion tunnel test-section flow conditions from measured nozzle free-stream velocity or static pressure, and (8) charts which provide a convenient means for properly preparing facility instrumentation and determining the level of quiescent test gas and acceleration gas pressures for a test.

The procedures for determining shock tube, expansion tube, and expansion tunnel flow quantities for real air are incorporated into a single computer program written in FORTRAN IV language. Required program inputs are listed and described in appendix A. A flow chart and a listing of the program are also presented in appendix A along with sample data printouts.

SYMBOLS

The International System of Units (SI) is used for all physical quantities in the present study. Conversion factors relating SI Units to U.S. Customary Units are given in reference 8.

- A cross-sectional area, m²
- a speed of sound, m/sec
- d shock tube or expansion tube inside diameter, m
- h specific enthalpy, m^2/sec^2 (J/kg)
- La length of acceleration section, m
- Ls distance measured downstream from secondary diaphragm, m
- distance between incident shock in region 1 and test-air—driver-gas interface, m (see fig. 1)
- M Mach number, U/a
- $\rm M_{_{\rm S}}$ incident shock Mach number, $\rm U_{_{\rm S}}/a$
- N_{Re} unit Reynolds number, $\rho U/\mu$, m⁻¹
- p pressure, N/m²
- iq stagnation point convective heat-transfer rate, W/m²
- R universal gas constant, 8.31434 kJ/kmol-K
- r radius, m
- s specific entropy, kJ/kg-K
- $sW_{\mathbf{u}}/R$ nondimensional specific entropy

T temperature, K

t test time, sec

U velocity, m/sec

U_I interface velocity, m/sec

U_r reflected shock velocity, m/sec

Us incident shock velocity, m/sec

W molecular weight, kg/kmol

 W_{u} molecular weight of undissociated air, 28.967 kg/kmol

X distance between primary diaphragm station and incident shock in region (1), m (see fig. 1)

 X_s distance behind incident shock in region \bigcirc , m (see fig. 1)

x mole fraction

Z compressibility factor, $pW_u/\rho RT$

 Z^{*} number of kmol of dissociated air per number of kmol of undissociated air, $W_{\rm U}/W$

γ ratio of specific heats

 $\gamma_{\rm E}$ isentropic exponent, $\left(\frac{\partial \log p}{\partial \log \rho}\right)_{\rm sW_U/R}$

 α defined by $Z^* = 1 + \alpha$

 δ^* nozzle boundary-layer displacement thickness, m

 μ coefficient of viscosity, N-sec/m²

```
density, kg/m^3
ρ
            time interval between arrival of incident shock and interface, sec
\tau
Subscripts:
            denotes region (2) for no standing shock at secondary diaphragm, region (2s)
Α
              for standing shock, and region (2r) for reflected shock (see fig. 1)
            atom
а
            effective (based on mass flow considerations)
eff
f
            frozen
            geometric
geo
            ideal
i
            k=2 denotes shock tube flow, k=5 denotes expansion tube flow, and
k
              k = 6 denotes expansion tunnel flow
            molecule
 m
             maximum
 max
             model nose
 n
             stagnation conditions behind normal bow shock at shock tube test section
 t,2
             stagnation conditions behind normal bow shock at expansion tube test section
 t,5
             stagnation conditions behind normal bow shock at expansion tunnel test section
 t,6
             wall
 W
```

distance behind incident shock in region (1), m (see fig. 1)

 X_s

1 ,	state of quiescent air in front of incident shock in shock tube (intermediate section of expansion tube)
2	state of air behind incident shock in shock tube
2s	state of air behind standing shock at secondary diaphragm or normal bow shock at shock tube test section
2r	state of air behind reflected shock at secondary diaphragm
3	state of expanded driver gas
4	initial driver gas conditions
5	state of test air in expansion tube test section
5s	static conditions behind normal bow shock at expansion tube test section
6	state of test air in expansion tunnel test section
6s	static conditions behind normal bow shock at expansion tunnel test section
10	state of quiescent acceleration gas in front of incident normal shock in acceleration section
20	state of acceleration gas behind incident normal shock in acceleration section
Superscript	: :

conditions at nozzle throat

FACILITIES, ANALYSIS, AND PROCEDURE

Before the procedures for determining shock tube, expansion tube, and expansion tunnel flow quantities are discussed, a brief description of these facilities is given. Next, the source of imperfect real-air thermodynamic properties is briefly discussed. After these discussions, the procedures for determining free-stream and post-normal-shock flow conditions for the shock tube, expansion tube, and expansion tunnel are presented.

Description of Shock Tube, Expansion Tube, and Expansion Tunnel

Shock tube. - The shock tube is a tube, generally cylindrical, divided by a highpressure diaphragm into two sections. The upstream section is the driver or highpressure section. This section is pressurized with a gas having a high speed of sound. such as unheated or heated hydrogen or helium. (Greater operation efficiency is realized with gases having a high speed of sound.) The downstream section is referred to as the driven or low-pressure section and the cross section is constant and generally circular. The driven section is usually evacuated and then filled with the test gas at ambient temperature. As illustrated in figure 1(a), the driver gas at time of diaphragm rupture is designated as region (4) and the quiescent test gas is designated as region (1). Upon rupture of the diaphragm, an incident shock wave propagates into region (1) with velocity $U_{s,1}$. Flow conditions immediately behind this shock are denoted as region (2) (fig. 1(b)), and shock tube testing takes place in the flow region from immediately behind this incident shock wave to the test-gas-driver-gas interface. For a blunt model positioned in the driven section, a standing shock is formed at the model, provided flow in region (2) is supersonic. (See fig. 1(c).) The flow conditions immediately behind this standing shock are designated as region (2s); the model stagnation conditions, as region (t2) When the incident shock wave reaches the end wall (or secondary diaphragm of the expansion tube, to be discussed subsequently), it is reflected back into region (2). (See fig. 1(d).) Flow conditions behind this reflected shock are designated as region (2r).

Expansion tube and expansion tunnel. The expansion tube is basically a shock tube with a section of constant cross section attached to the downstream end. A weak low-pressure diaphragm (secondary diaphragm) separates this section, denoted as the expansion or acceleration section, from the driven section, which is commonly referred to as the intermediate section of the expansion tube. The acceleration section is evacuated and filled with the acceleration gas at a low pressure and ambient temperature. The expansion tunnel is simply an expansion tube with a nozzle added to the downstream end.

The operating sequence of the expansion tunnel includes that for an expansion tube, which, in turn, includes that for a shock tube; the sequence for an expansion tunnel is shown schematically in figure 2. The sequence begins with the rupture of the primary or high-pressure diaphragm separating the driver and driven sections. An incident shock wave propagates into the static test gas and an expansion wave propagates into the driver gas. The shock wave encounters and ruptures the secondary diaphragm. Flow energy lost in rupturing this diaphragm results in an upstream-facing shock wave reflected from the diaphragm. If this shock wave is assumed to be a standing shock, flow conditions behind this standing shock are denoted as region (2s); if a totally reflected shock at the secondary diaphragm is assumed, flow conditions behind this reflected shock are

denoted as region (2r). (See fig. 1(d).) A second incident shock wave propagates into the acceleration gas while an upstream expansion wave moves into the test gas. In passing through this upstream expansion wave, the test gas undergoes an isentropic unsteady expansion that results in an increase in flow velocity. Expansion tube testing occurs in the flow that has passed through the expansion and is denoted as region (5) in figure 2. Thus, for the expansion tunnel, the test gas is processed first by an incident shock into the quiescent test gas in region (1), second, by a shock wave resulting from shock reflection at the secondary diaphragm, third, by an unsteady expansion in the acceleration section, and finally, by an isentropic steady expansion in the nozzle. Expansion tunnel testing takes place in region (6) of figure 2.

Thermodynamic Properties for Real Air

Thermodynamic properties for imperfect real air in thermochemical equilibrium are obtained from a magnetic tape furnished to the Langley Research Center by the Arnold Engineering Development Center (AEDC). The thermodynamic properties obtained from this tape correspond to the properties tabulated in reference 9 for various values of entropy sW_u/R . The temperature range of the AEDC tape is 100 K to 15 000 K and the sW_u/R range is 15.6 to 133. A subroutine for searching the real-air tape was also obtained from AEDC and is designated herein as SLOW. An interpolation procedure allowing pressure p and enthalpy h as inputs was derived for the study of reference 10 and is referred to herein as SEARCH.

The relations derived in reference 11 for predicting thermodynamic properties of real air in thermochemical equilibrium are also employed in the present study. These relations were obtained from curve fits and cover a temperature range of 90 K to 15 000 K and an sW_u/R range of 26 to 126. Imperfect air (intermolecular force) effects are neglected in reference 11. These relations are incorporated into a subroutine designated as SAVE. The sources of thermodynamic properties are discussed in more detail in reference 10 and appendix B.

Calculation Procedure for Shock Tube

As in reference 5, three combinations of inputs are considered for determining flow quantities in region ②. In all three combinations, the quiescent test air pressure p_1 and temperature T_1 are assumed to be known. The quantities (1) incident-shock velocity $U_{s,1}$, (2) pressure behind the incident shock in the driven section p_2 , or (3) the driver gas pressure p_4 and temperature T_4 are used in conjunction with p_1 and T_1 to determine conditions in region ②.

The conservation relations, in a laboratory coordinate system, for mass, momentum, and energy for a normal shock wave moving through region $\bigcirc{1}$ are

$$\rho_1 \mathbf{U_{s,1}} = \rho_2 \left(\mathbf{U_{s,1}} - \mathbf{U_2} \right) \tag{1}$$

$$p_1 + \rho_1 U_{s,1}^2 = p_2 + \rho_2 \left(U_{s,1} - U_2 \right)^2$$
 (2)

$$h_1 + \frac{1}{2} U_{s,1}^2 = h_2 + \frac{1}{2} (U_{s,1} - U_2)^2$$
 (3)

These relations are solved in conjunction with the equation of state (that is, source of real-air thermodynamic properties) in the form

$$\rho_2 = \rho_2(p_2, h_2) \tag{4}$$

for the unknown quantities ρ_2 , h_2 , U_2 , and p_2 or $U_{s,1}$. For the Langley shock tube and expansion tube, T_1 is ambient and p_1 is generally less than 1MN/m^2 . At these conditions in region (1), imperfect air effects are negligible and corresponding thermodynamic quantities appearing on the left-hand side of equations (1) to (3) are obtained from perfect air $\left(Z_1 = 1, \ \gamma_1 = 7/5\right)$ relations.

Equations (1) to (4) are solved by iteration. The iterative schemes used for inputs $U_{s,1}$, p_2 , or p_4 and T_4 are discussed in detail in reference 5. For all three combinations of inputs, the air flow in region (2) is assumed to be in thermochemical equilibrium.

The procedure for determining shock tube performance where p_4 and T_4 are inputs is commonly referred to as "simple shock tube theory," since it is based on a simplified one-dimensional, inviscid flow model which assumes instantaneous diaphragm rupture, no shock wave attenuation, and a driver to driven cross-sectional area ratio of unity. Imperfect gas effects in region 4 for helium at 200 K \leq $T_4 \leq$ 15 000 K and hydrogen at 273 K \leq $T_4 \leq$ 600 K are included.

Two additional shock tube flow regions of interest (fig. 1) are the result of a standing shock in region (2) (region (2s)) and a totally reflected shock into region (2) (region (2r)). Because of shock reflection at the secondary diaphragm of the expansion tube, these two regions are also considered in the calculation of expansion tube flow quantities and are discussed subsequently.

Effect of boundary layer on test time. - Shock tube wall boundary-layer growth behind the incident shock introduces departures from ideal shock tube flow. (See refs. 6

and 7.) The presence of this boundary layer causes the incident shock to decelerate, the interface to accelerate, and the flow between the incident shock and interface to be non-uniform. When the wall boundary-layer displacement thickness is large in comparison with the tube diameter, the separation distance between the incident shock and the interface and the test time approach limiting maximum values. (Test time is defined as the time interval between arrival of incident shock in region 1 and arrival of the test-gas—driver-gas interface at a given station.) Actual shock tube test times may be considerably less than the values predicted by use of idealized theory. Thus, shock tube test time and flow nonuniformity are considered in the present calculations. Since these flow phenomena are dependent on the character of the shock tube wall boundary layer behind the incident shock, the effect of both laminar and turbulent wall boundary layers are included.

Shock tube test times have been treated analytically in reference 6 for laminar boundary layers and in reference 7 for turbulent boundary layers. For a laminar boundary layer, the test time t is obtained from the relation (ref. 6)

$$2\ell_{\max}\left(\frac{\rho_2}{\rho_1}\right)\left[\log_e\left(1-\sqrt{\frac{U_{s,1}t}{\ell_{\max}}}\right)+\sqrt{\frac{U_{s,1}t}{\ell_{\max}}}\right]+U_{s,1}t=-x \tag{5}$$

where the separation distance between the incident shock in region \bigcirc and the test-gas—driver-gas interface ℓ for a given distance X downstream of the diaphragm station is given by (ref. 6)

$$2\ell_{\max}\left(\frac{\rho_2}{\rho_1}\right)\left[\log_e\left(1-\sqrt{\frac{\ell}{\ell_{\max}}}\right)+\sqrt{\frac{\ell}{\ell_{\max}}}\right] = -X$$
 (6)

Simple expressions for the maximum separation distance ℓ_{max} in terms of known quantities were obtained from curve fits applied to the real-air results of reference 6 and yielded the expressions

$$\ell_{\text{max}} = p_1 d^2 \left(2.060 - 2.056 \times 10^{-1} \,\mathrm{M_{s,1}} + 8.095 \times 10^{-3} \,\mathrm{M_{s,1}^2} \right) \qquad \left(4 < \mathrm{M_{s,1}} \le 14 \right) \qquad (7a)$$

$$\ell_{\text{max}} = p_1 d^2 \left(8.723 \times 10^{-1} - 7.488 \times 10^{-3} \,\mathrm{M_{s,1}} \right) \qquad \left(14 < \mathrm{M_{s,1}} < 30 \right) \qquad (7b)$$

The results of figure 6 of reference 6 were extrapolated to a value of $M_{s,1}$ equal to 30 to obtain equation (7b). As the separation distance approaches this limiting value ℓ_{max} , the interface velocity approaches the incident shock velocity and is essentially equal to $U_{s,1}$ at ℓ_{max} .

The test time for a turbulent boundary layer is obtained from the relation (ref. 7)

$$\frac{5\ell_{\max}(\rho_{2})}{4} \left\{ \log_{e} \left[\frac{1 + \left(\frac{U_{s,1}t}{\ell_{\max}}\right)^{0.2}}{1 - \left(\frac{U_{s,1}t}{\ell_{\max}}\right)^{0.2}} \right] + 2 \tan^{-1} \left(\frac{U_{s,1}t}{\ell_{\max}}\right)^{0.2} - 4\left(\frac{U_{s,1}t}{\ell_{\max}}\right)^{0.2} \right\} - U_{s,1}t = X$$
(8)

where & is obtained from the relation (ref. 7)

$$\frac{5\ell_{\max}\left(\frac{\rho_2}{\rho_1}\right)}{4}\left\{\log_e\left[\frac{1-\left(\frac{\ell}{\ell_{\max}}\right)^{0.2}}{1+\left(\frac{\ell}{\ell_{\max}}\right)^{0.2}}\right]-2\tan^{-1}\left(\frac{\ell}{\ell_{\max}}\right)^{0.2}+4\left(\frac{\ell}{\ell_{\max}}\right)^{0.2}\right\} = -X$$
(9)

Curve fits to the real-air results of reference 7 yielded the following expressions for ℓ_{max} :

$$\ell_{\text{max}} = p_1^{0.25} d^{1.25} \left(5.273 - 7.514 \times 10^{-1} \,\mathrm{M_{s,1}} + 3.435 \times 10^{-2} \,\mathrm{M_{s,1}^2} \right) \qquad \left(4 < \mathrm{M_{s,1}} < 10 \right) \tag{10a}$$

$$\ell_{\text{max}} = p_1^{0.25} d^{1.25} \left(1.546 - 3.017 \times 10^{-2} \,\mathrm{M_{s,1}} \right) \qquad \left(10 \le \mathrm{M_{s,1}} < 30 \right) \tag{10b}$$

For the inviscid case, the "ideal" test time is given by the relation (ref. 12)

$$t_{i,2} = \frac{\rho_1}{\rho_2} \frac{X}{U_2}$$
 (11)

Effect of boundary layer on flow nonuniformity. A method for estimating flow non-uniformity (axial variation of flow quantities) between the incident shock and interface after maximum separation distance is reached is presented in references 6 and 13. In these references, the concept of an equivalent inviscid channel is employed and yields the following continuity equation:

$$\rho_{2,X_{s}}(U_{s,1} - U_{2,X_{s}}) = \rho_{2,X_{s}=0}(U_{s,1} - U_{2,X_{s}=0}) \left[1 - \left(\frac{X_{s}}{\ell_{max}}\right)^{n}\right]$$
(12)

where n = 0.5 for a laminar boundary layer and n = 0.8 for a turbulent boundary layer. Additional relations required for solution of flow conditions in the region between the incident shock and interface are the isentropic condition for equivalent inviscid channel flow

$$\left(\frac{s_2 W_u}{R}\right)_{X_S} = \left(\frac{s_2 W_u}{R}\right)_{X_S=0} \tag{13}$$

and either the energy relation

$$h_{2,X_{s}} + \frac{1}{2} (U_{s,1} - U_{2,X_{s}})^{2} = h_{2,X_{s}=0} + \frac{1}{2} (U_{s,1} - U_{2,X_{s}=0})^{2}$$
 (14a)

if the AEDC real-air tape is used as the source of thermodynamic properties $(\rho = \rho(h, sW_u/R))$, or the momentum relation

$$\mathbf{p_{2,X_{s}}} + \rho_{2,X_{s}} \left(\mathbf{U_{s,1}} - \mathbf{U_{2,X_{s}}}\right)^{2} = \mathbf{p_{2,X_{s}=0}} + \rho_{2,X_{s}=0} \left(\mathbf{U_{s,1}} - \mathbf{U_{2,X_{s}=0}}\right)^{2} \tag{14b}$$

if the AEDC real-air curve fit expressions are used ($\rho = \rho(p, sW_u/R)$). This system of equations is solved for the unknowns ρ_{2,X_S} , U_{2,X_S} , and P_{2,X_S} , in conjunction with the equation of state, by iteration on ρ_{2,X_S} for a given value of X_s/ℓ_{max} . As discussed in reference 6, equation (12) is less accurate for the case where the maximum separation distance has not been obtained. This inaccuracy is due to entropy variations (associated with nonuniform shock motion) and the unsteady nature of the flow between the incident shock and the interface. Since the accuracy of equation (12) decreases as ℓ/ℓ_{max} decreases from its limiting value near unity, the effect of flow nonuniformity is determined herein only when the condition $\ell/\ell_{max} \ge 0.9$ is satisfied.

Calculation Procedure for Expansion Tube

As discussed in reference 14, the flow energy lost in rupture of the secondary diaphragm must result in an upstream-facing shock wave reflected from this diaphragm. When the diaphragm ruptures, the resulting expansion fan overtakes and weakens the reflected shock. It is sometimes assumed that the reflected shock has been weakened to a standing shock by the time it processes the flow which eventually becomes the test flow. Therefore, the possible existence of a standing normal shock at the secondary diaphragm (region (2s)) was considered in reference 5.

Recently, tests were performed in the Langley expansion tube with helium as the test gas. (See ref. 15.) The primary reason for employing helium was to divorce possible effects of flow chemistry on test-section flow quantities from the gas dynamics or fluid mechanics of the flow and, thereby, to provide an approximate model of the expansion tube fluid mechanics. These helium tests indicated the existence of a totally reflected shock at the secondary diaphragm (region (2r)). Hence, the effects of a reflected shock, as well as those of a standing shock, at the secondary diaphragm are considered herein. As in region (2r), flow quantities in regions (2r) are assumed to be in thermochemical equilibrium. In computing flow quantities in regions (2r), flow quantities in region (2r) are assumed to be uniform.

Standing shock at secondary diaphragm. - The conservation relations for a standing shock at the secondary diaphragm are

$$\rho_2 \mathbf{U}_2 = \rho_{2s} \mathbf{U}_{2s} \tag{15}$$

$$p_2 + \rho_2 U_2^2 = p_{2s} + \rho_{2s} U_{2s}^2$$
 (16)

$$h_2 + \frac{1}{2} U_2^2 = h_{2s} + \frac{1}{2} U_{2s}^2$$
 (17)

Since the conditions in region ② are assumed to be known (that is, calculated previously), equations (15) to (17) are solved in conjunction with the equation of state, by iteration, to yield conditions behind the standing shock (region ②s). (It should be noted that the flow conditions in region (2s) are the same as those immediately behind a normal bow shock wave on a model positioned in the shock tube test section.)

Totally reflected shock at secondary diaphragm. - For a totally reflected shock wave at the secondary diaphragm, the conservation relations are

$$\rho_2 \left(\mathbf{U}_2 + \mathbf{U}_r \right) = \rho_{2r} \mathbf{U}_r \tag{18}$$

$$p_2 + \rho_2 (U_2 + U_r)^2 = p_{2r} + \rho_{2r} U_r^2$$
(19)

$$h_2 + \frac{1}{2}(U_2 + U_r)^2 = h_{2r} + \frac{1}{2}U_r^2$$
 (20)

Again, the conditions in region (2) are assumed to be known. Equations (18) to (20) are solved by iteration for the thermodynamic properties in region (2r) and the reflected shock velocity U_r .

Thermochemical-equilibrium unsteady expansion. Region (A) is defined as being region (2) for the case of no shock reflection at the secondary diaphragm, region (2s) for a standing shock, and region (2r) for a totally reflected shock. As discussed previously, the expansion tube flow undergoes an isentropic, unsteady expansion from region (A) to region (5). Across an upstream-facing unsteady expansion wave, the velocity increment is related to the thermodynamic properties by the integral expression (ref. 1)

$$\Delta U = U_5 - U_A = -\int_{h_A}^{h_5} \left(\frac{dh}{a}\right)_{s_A W_u/R}$$
(21)

Either free-stream pressure or test-air—acceleration-gas interface velocity U_5 is considered, individually, as inputs necessary for the solution of equation (21). As is typical of high-enthalpy facilities, the assumption of thermochemical-equilibrium air flow is subject to question. Hence, limiting cases are obtained by performing both a thermochemical equilibrium expansion and a frozen expansion.

For an equilibrium expansion where the quantity U_5 is an input, the ΔU of equation (21) is known. If the AEDC real-air tape is to be used as the source of thermodynamic properties, the enthalpy is decreased from a maximum value of h_A in given increments. Since an isentropic $\left(s_A W_u/R = s_5 W_u/R\right)$ expansion is assumed, subroutine SLOW (inputs h and $s_A W_u/R$) is used to generate corresponding values of the inverse of the speed of sound a^{-1} . If the AEDC real-air curve-fit relations are to be used instead of the AEDC tape, pressure is decreased in given increments from a maximum value of p_A . These values of pressure are used in the subroutine SAVE with constant entropy $s_A W_u/R$ to generate corresponding values of enthalpy (the maximum value being h_A) and the inverse of the speed of sound. Equation (21) is integrated numerically between the known limit h_A and the unknown limit h_5 . The value of h which equates the integral of equation (21) to ΔU is the desired value of h_5 . Corresponding thermodynamic quantities in region 6 are obtained from the real-air source, since the quantities $s_5 W_u/R$

and h_5 or p_5 are now known. When p_5 is an input, the thermodynamic quantities in region 5 are obtained directly from the real-air source since s_5W_u/R and p_5 are known. With the limits of integration known, the integral in equation (21) is evaluated numerically to give ΔU , and hence U_5 .

Additional conditions in region \odot that are of interest are free-stream Mach number M_5 and free-stream unit Reynolds number $N_{Re,5}$. For values of T_5 less than or equal to 1500 K, the free-stream viscosity μ_5 required in determining $N_{Re,5}$ is calculated from Sutherland's viscosity law (ref. 10), whereas for values of T_5 greater than 1500 K, μ_5 is obtained by use of the results of reference 16.

Frozen unsteady expansion. – Frozen flow is defined herein as flow in which the vibrational energy and chemistry remain unchanged during the expansion of the test air. For the expansion tube, this freezing of the vibrational energy and chemistry is assumed to occur in region (A). Hence, the energy in region (A) may be viewed as consisting of an active or available part which provides the energy for flow expansion and a frozen or nonavailable part. Since the energy associated with vibration and chemistry is constant for a frozen expansion, the ratio of specific heats γ will be constant and the test air behaves as a perfect gas. To obtain an estimate of the ratio of frozen specific heats γ_f for dissociated but unionized air, it is assumed that the dissociated air may be modeled by atoms (O and N) and molecules (N2, O2, and NO). It is further assumed that the atoms are not distinguishable and the molecules are not distinguishable. This is a reasonable assumption since W_O is approximately equal to W_N , and W_{O2} , W_{N2} , and W_{NO} are approximately equal. The molecular weight for this composition is given by the relation

$$W = x_a W_a + x_m W_m \approx W_a (2 - x_a)$$
 (22)

where the sum of the mole fractions is unity $(x_a + x_m = 1)$ and the molecular weight of a molecule (O_2, N_2, NO) is approximately twice that of an atom (O, N). From the relation Z^* equal to W_u/W , where W_u is approximately W_m , the expression

$$Z^* = \frac{2}{2 - x_a} \tag{23}$$

is obtained. By letting the quantity Z^* be defined as $1 + \alpha$, it can be shown that

$$\gamma_{\mathbf{f}} = \frac{7 + 3\alpha}{5 + \alpha} \tag{24}$$

Since the quantity Z_A^* is assumed to be known, values of α , and hence γ_f , may be obtained.

For a frozen (perfect) gas, equation (21) may be evaluated in closed form to yield

$$U_{5,f} - U_{A} = \frac{2}{\gamma_{f} - 1} (a_{A,f} - a_{5,f})$$
 (25)

If a value of $U_{5,f}$ is known, the frozen free-stream speed of sound $a_{5,f}$ follows from equation (25) and the corresponding frozen thermodynamic quantities in region $\boxed{5}$ are determined from the isentropic perfect gas relations of reference 17. (See ref. 5.) For the case where a value of $p_{5,f}$ is known, the quantity $a_{5,f}$ is determined from the isentropic perfect gas relation (ref. 17)

$$a_{5,f} = a_{A,f} \left(\frac{p_{5,f}}{p_{A}}\right)^{\frac{\gamma_{f}-1}{2\gamma_{f}}}$$
(26)

Corresponding frozen quantities in region (5) are determined similarly, and $U_{5,f}$ is obtained from equation (25).

The ideal test time for the expansion tube (test time is defined as the time interval between arrival of the acceleration-gas—test-air interface and the expansion fan (ref. 1) is given by the relation

$$t_{i,5} = L_a \left(\frac{1}{U_5 - a_5} - \frac{1}{U_5} \right)$$
 (27)

The actual test time may be somewhat less than this ideal test time because of the early arrival of a downstream expansion wave. (See ref. 14.) The time of arrival of this downstream expansion wave for real air is not determined in the present study.

Flow attenuation. The air-test-gas—helium-acceleration-gas interface velocity in the acceleration section of the Langley pilot model expansion tube was observed (ref. 14) to decrease in traversing the acceleration section. A decrease in flow velocity along the acceleration section was also observed in recent tests (ref. 15) performed in the Langley 6-inch expansion tube with air test gas and air acceleration gas. Thus, the effect of flow attenuation on calculated flow quantities in region (5) and on the post-normal-shock region of a test model subjected to flow in region (5) is considered herein.

A method for determining the effect of flow attenuation on thermodynamic quantities in region 5 is discussed in reference 14. To illustrate this method, consider a thermodynamic quantity in region 5, such as p_5 , plotted as a function of interface velocity U_5

at the exit of the acceleration section. Application of the method of reference 14 is equivalent to a shift of point p_5 , U_5 for no flow attenuation to point p_5 , $U_5 - 2\Delta U_5$ with flow attenuation. The quantity ΔU_5 is the difference between the maximum and minimum (that is, acceleration section exit) values of interface velocity observed along the acceleration section. In the present program, the unsteady expansion is performed to the acceleration section exit (region 5) and the interface velocity U_5 changed to $U_5 - 2\Delta U_5$ to account for flow attenuation. Post-normal-shock flow quantities (regions 5) and 1) are calculated by the shock crossing procedure to be discussed subsequently, where the free-stream velocity is equal to $U_5 - 2\Delta U_5$. The effect of flow attenuation is included for an equilibrium expansion only.

Acceleration-gas flow quantities and quiescent pressure. An important parameter in the operation of an expansion tube is the initial pressure of the acceleration gas p_{10} . This pressure is the controlling factor in determining the degree of expansion in the acceleration section. In reference 5, a range of p_{10} was determined for each U_5 with helium acceleration gas. Only helium was considered in reference 5, since helium was used exclusively as the acceleration gas in the Langley pilot model expansion tube. (See ref. 14.) However, more recent tests in the Langley 6-inch expansion tube (ref. 15) have indicated the desirability of using the same gas for both test gas and acceleration gas.

In the present study, the conditions in region 5 are determined prior to calculating the corresponding value of p_{10} required. Since the values of p_{10} are relatively low and since the quiescent acceleration air temperature T_{10} is ambient, thermodynamic conditions in region 10 obey ideal air relations. At the interface of the acceleration air and test air, it is required that p_{20} equal p_{5} and p_{20} equal p_{5} and p_{20} equal p_{5} . Hence, the conservation relations for an incident shock wave into region p_{20} 0, excluding the effect of boundary-layer growth along the tube wall, are

$$\frac{W_{10}}{RT_{10}} p_{10} U_{s,10} = \rho_{20} (U_{s,10} - U_5)$$
 (28)

$$p_{10} \left(1 + \frac{W_{10}}{RT_{10}} U_{s,10}^2 \right) = p_5 + \rho_{20} \left(U_{s,10} - U_5 \right)^2$$
 (29)

$$\frac{7}{2} \frac{R}{W_{10}} T_{10} + \frac{1}{2} U_{s,10}^2 = h_{20} + \frac{1}{2} \left(U_{s,10} - U_5 \right)^2$$
 (30)

where the unknowns are p_{10} , ρ_{20} , h_{20} , and $U_{s,10}$. The equation of state represents the required fourth relation. These relations are solved by iteration. An initial guess

of the quantity $U_{s,10}$ is made, this being 1.11 times U_5 (corresponding to ρ_{20}/ρ_{10} equal to 10), and h_{20} is obtained from equation (30). The quantity p_{20} (which is equal to p_5) and this initial estimate of h_{20} are used as inputs to the source of thermodynamic properties and a value of ρ_{20} is obtained. This value of ρ_{20} is used in equation (29) to obtain a value of p_{10} . A new (up-dated) value of $U_{s,10}$ is determined from equation (28), and if not within 0.1 percent of the initial guess of $U_{s,10}$, the procedure is repeated. Iteration on the quantity $U_{s,10}$ is continued until successive values of $U_{s,10}$ are within the desired tolerance.

If helium is to be used as the acceleration gas, as in the experimental study of reference 14, the corresponding value of $\,{\rm p}_{10}\,$ for helium may be estimated from that for air. Combining equations (28) and (29) yields the expression

$$p_5 = p_{10} + \rho_{10} U_{s,10} U_{5}$$

For a strong incident shock, p_{10} is small compared with the product $\rho_{10} U_{s,10} U_{5}$; hence, p_{5} is approximately equal to $\rho_{10} U_{s,10} U_{5}$. Equating p_{5} and U_{5} for both acceleration gases gives

$$\left(\rho_{10}U_{s,10}\right)_{He} \approx \left(\rho_{10}U_{s,10}\right)_{air}$$

For the same value of U_5 , the incident shock velocities in air and helium are relatively close; in the limit of maximum separation distance between the shock and interface, these $U_{s,10}$ values are equal. Thus, $\rho_{10,\mathrm{He}}$ is approximately equal to $\rho_{10,\mathrm{air}}$ and $\rho_{10,\mathrm{He}}$ is equal to 7.24 times $\rho_{10,\mathrm{air}}$

Calculation Procedure for Expansion Tunnel

Thermochemical-equilibrium steady expansion. The entrance conditions at the nozzle of the expansion tunnel correspond to the conditions in region (5). As discussed previously, the expansion tunnel flow is assumed to undergo an isentropic steady expansion from region (5) to region (6). The basic differential equation for this expansion is (ref. 1)

$$dU = -\left(\frac{dh}{U}\right)_{sW_u/R}$$
(31)

which may be integrated between regions (5) and (6) to give

$$h_5 + \frac{1}{2} U_5^2 = h_6 + \frac{1}{2} U_6^2 \tag{32}$$

The left-hand side of equation (32) is considered to be known. Inputs considered (individually) for determining expansion tunnel flow conditions are p_6 and U_6 . For an equilibrium nozzle expansion in which the quantity U_6 is known, h_6 is obtained from equation (32) and the corresponding thermodynamic quantities in region 6 are determined from the source of thermodynamic properties with the quantities h_6 and s_6W_u/R (which is equal to s_AW_u/R) as input. For the case where a value of p_6 is known, the thermodynamic quantities in region 6 follow from the source of thermodynamic properties with the quantities p_6 and p_6W_u/R as input, and the corresponding value of p_6 is obtained from equation (32).

Frozen steady expansion. For a frozen nozzle expansion, it is assumed that the flow in region 5 is in equilibrium, and the assumption is made that freezing occurs at the nozzle throat. The procedure for calculating frozen flow conditions in region 6 is similar to that discussed previously for region 5 of the expansion tube, whereby the equilibrium conditions in region 5 correspond to those of region 4 and the frozen conditions of region 6 correspond to those of region 5. The difference is that equation (32) for a steady expansion replaces equation (25) which applies to an unsteady expansion.

Nozzle boundary-layer displacement thickness. - A quantity of interest is the nozzle boundary-layer displacement thickness. This quantity, with one-dimensional flow assumed, is given by the relation

$$\delta^* = r_{geo} - r_{eff}$$
 (33)

where the radius of the inviscid core is given by

$$r_{eff} = r_{eff}^* \left(\frac{A}{A^*}\right)_{eff}^{1/2}$$
(34)

and $r_{\rm geo}$ is the nozzle wall radius. The ratio $(A/A^*)_{\rm eff}$ is determined from the continuity equation for one-dimensional, steady flow

$$\left(\frac{A}{A^*}\right)_{eff} = \frac{\rho_5 U_5}{\rho_6 U_6} \tag{35}$$

where quantities appearing on the right-hand side have been calculated previously. With the assumption that the displacement thickness at the nozzle entrance (throat) is zero $(r_{geo}^* = r_{eff}^*)$, equation (33) becomes

$$\delta^* = r_{\text{geo}} - r_{\text{geo}}^* \left(\frac{\rho_5 U_5}{\rho_6 U_6} \right)^{1/2}$$
(36)

Calculation of Flow Quantities Behind Normal Bow Shock at Test Model

For some tests in the shock tube and most tests in the expansion tube or expansion tunnel, a test model is positioned in the test section. Hence, it is desirable to determine the flow quantities behind the normal part of the bow shock of a blunt test model. The conservation relations for a standing normal shock at a blunt body are given in equations (15) to (17), where the subscripts 2 and 2s are now replaced by 5 and 5s for the expansion tube and 6 and 6s for the expansion tunnel. For an equilibrium expansion, the flow behind the normal bow shock is assumed to be in equilibrium; for a frozen expansion, the flow behind the normal bow shock is assumed to be either in equilibrium or frozen. For the case of equilibrium post-bow-shock flow, the conservation relations are solved, in conjunction with the equation of state, by iteration to obtain the static conditions immediately behind the shock. Stagnation-point properties are determined by using the assumption that the flow region from immediately behind the bow shock to the stagnation point is isentropic (that is, $s_{kS}W_u/R = s_{t,k}W_u/R$, where k is equal to 2 for shock tube, 5 for expansion tube, and 6 for expansion tunnel) and the energy relation for an equilibrium expansion to the test section is (k = 2,5, or 6)

$$h_{t,k} = h_k + \frac{1}{2} U_k^2$$
 (37)

and for a frozen expansion is (k = 5 or 6)

$$h_{t,k} = h_{k,f} + h_{A,f} + \frac{1}{2} U_{k,f}^2$$
 (38)

This procedure, in which $s_{t,k}W_u/R$ and $h_{t,k}$ are known, requires usage of the AEDC tape. A second procedure considered, which makes use of the AEDC curve fits, is to estimate $p_{t,k}$ from the relation (ref. 5)

$$p_{t,k} = p_{ks} \left(1 + \frac{\gamma_{E,ks} - 1}{2} M_{ks}^2\right)^{\gamma_{E,ks} - 1}$$
 (39)

This value of $p_{t,k}$ is used in conjunction with $s_{t,k}W_u/R$ as input to the subroutine SAVE. If the value of $h_{t,k}$ obtained from SAVE is not within 0.1 percent of the value obtained from equation (37) or (38), $p_{t,k}$ is up-dated by the relation

$$\left(\mathbf{p_{t,k}}\right)_{\text{new}} = \frac{\left(\mathbf{p_{t,k}}\right)_{\text{previous}}\left(\mathbf{h_{t,k}}\right)_{\text{known}}}{\left(\mathbf{h_{t,k}}\right)_{\text{previous}}}$$
(40)

(where $(h_{t,k})_{known}$ was obtained from eq. (37) or (38)) and the iterative procedure repeated until the desired criteria on $h_{t,k}$ is obtained. The stagnation-point heat-transfer rate for a spherical body positioned in the shock tube (k = 2), expansion tube (k = 5), or expansion tunnel (k = 6) is determined from the expression (ref. 18)

$$\dot{q}_{t,k} = 3.88 \times 10^{-4} \sqrt{\frac{p_{t,k}}{r_n}} (h_{t,k} - h_w)$$
 (41)

For the case of frozen post-bow-shock flow, normal-shock crossing relations for perfect air (ref. 17) are used to obtain conditions immediately behind the shock and isentropic, perfect air relations are used to obtain stagnation-point conditions.

It should be noted that flow properties behind the normal part of the bow shock wave of an entry body at high velocity are equivalent to the properties behind an incident shock in a shock tube traveling at that velocity. In free flight, the free-stream conditions and flight velocity correspond to the initial conditions in region (1) and the incident shock

velocity $U_{s,1}$, respectively, whereas static and stagnation conditions behind the bow shock correspond to conditions in regions (2) and (t2), respectively.

RESULTS AND DISCUSSION

Description of the inputs necessary to utilize the present computer program is presented in appendix A along with a flow chart, listing of the program, brief description of basic subroutines, and sample printout. The accuracy and limitations of the program are discussed in appendix B. Results of calculations illustrating the application of the program to shock tube and expansion tube flows are presented in figures 3 to 20, with figures 3, 4, 5, and 18 for the shock tube and figures 6 to 17, 19, and 20 for the expansion tube.

Flow quantities in region (2) may be obtained by using the basic measured inputs in the following combinations:

Case (1): p_1 , T_1 , and $U_{s,1}$

Case (2): p_1 , T_1 , and p_2

Case (3): p_1 , T_1 , p_4 , T_4 , and W_4

Case (3) is useful in ascertaining the theoretical performance prior to a test and in comparison of measured quantities $U_{s,1}$ and p_2 with predicted values from simple shock tube theory. The computational method for case (3) is illustrated in figure 3 where velocity-pressure $\left(U_3, p_3\right)$ curves for perfect and imperfect, isentropic unsteady expansion of helium and hydrogen driver gases are shown in conjunction with velocity-pressure $\left(U_2, p_2\right)$ curves for incident normal shocks in equilibrium, real air. In figure 3, the value of p_4 was 68.95 MN/m² for both driver gases and T_4 is varied from 300 K to 10 000 K for helium (figs. 3(a) to 3(c)) and from 300 K to 600 K for hydrogen (figs. 3(d) and 3(e)). The ambient air temperature T_1 was 300 K and p_1 was varied from 6.9 N/m² to 6.9 MN/m². Solutions for case (3) are the intersections of the U_2, p_2 air curves (generated by using 20 values of $U_{s,1}$ for each value of p_1 and the AEDC curve-fit expressions as a source of thermodynamic properties) and U_3, p_3 helium or hydrogen curves. (That is, the solution is obtained when $U_2 = U_3$ and $p_2 = p_3$.) For a helium driver gas and the conditions in region (4) of figure 3, no appreciable imperfect helium effects on the predicted isentropic expansion are observed. A small effect of imperfect hydrogen is observed in figures 3(d) and 3(e).

Shock tube performance for real air with helium and hydrogen driver gases is shown in figure 4, where incident shock velocity $U_{s,1}$ is plotted as a function of pressure

ratio p_4/p_1 . These results were generated by two methods. First, two values of p_1 (6.9 N/m² and 6.9 kN/m²) were used in conjunction with various values of p_4 to obtain the range of p_4/p_1 shown. Compressibility factors for the higher values of p_4 for helium and hydrogen driver gases are given in the following table:

PART / 2	/n 7/	Z ₄ for -		
p_4 , MN/m ²	т ₄ , к	Helium	Hydrogen	
0.69	600	1.001	1.002	
3.45	600	1.007	1.012	
6.90	600	1.015	1.024	
13.79	600	1.029	1.051	
34.47	600	1.071	1.135	
68.95	600	1.139	1.282	
137.90	600	1.264	1.566	

Second, p_4 was held constant at 68.95 MN/m² and p_1 varied from 6.9 N/m² to 6.9 MN/m². In both cases, T_1 was equal to 300 K and T_4 was equal to 600 K. The curves from these two methods were found to be identical for both the helium driver gas and the hydrogen driver gas. Differences between perfect hydrogen $(Z_4 = 1.0)$ and imperfect hydrogen driver gas are observed (fig. 4) to be small, and the perfect hydrogen driver gas yields somewhat higher values of $U_{s,1}$ for a given p_4/p_1 in agreement with reference 19. The improved performance expected with hydrogen driver gas, in comparison with helium driver gas, is evident in figure 4.

Simple shock tube predictions for real air are shown for helium (figs. 5(a) and 5(b)) and hydrogen (fig. 5(c)) driver gases at p_4 equal to 68.95 MN/m². The T_4 for helium is varied in 50 K increments from 300 K to 700 K (fig. 5(a)) and in 1000 K increments from 1000 K to 12 000 K (fig. 5(b)) and for hydrogen (fig. 5(c)) is varied in 50 K increments from 300 K to 600 K. The value $T_4 = 700$ K for helium represents the maximum value obtainable in the Langley expansion tube with resistance heating and the value $T_4 = 600$ K for hydrogen represents the limit of curve fitting as applied to virial coefficients in reference 5. For an arc-driven shock tube or expansion tube using helium driver gas, much higher T_4 values than presented in figure 5(a) are realized; hence, figure 5(b) represents an extension in range of T_4 to figure 5(a). At the maximum T_4 of 12 000 K, ionization of the helium driver gas is essentially negligible. (See ref. 20.) Values of p_1 , p_4 , and T_4 being known, a theoretical value of $U_{8,1}$ in real air may be obtained from figure 5.

Combinations of measured input for obtaining stagnation-point conditions in the expansion tube test section (region (t5)), when it is assumed that thermochemical equilibrium flow conditions in region (A) are known (previously calculated), are summarized in the following table:

Case	Measured input	Unsteady expansion	Post normal shock
(1)	U ₅ or p ₅	Equilibrium	Equilibrium
(2)	U ₅ or p ₅	Frozen	Equilibrium
(3)	U ₅ or p ₅	Frozen	Frozen

Similarly, combinations of measured input for obtaining stagnation-point conditions in the expansion tunnel test section (region (6)), when thermochemical equilibrium flow conditions in region (5) are known, are summarized in the following table:

Case	Measured input	Steady expansion	Post normal shock
(1)	U ₆ or p ₆	Equilibrium	Equilibrium
(2)	U6 or p6	Frozen	Equilibrium
(3)	U ₆ or p ₆	Frozen	Frozen

The first consideration in performing a test in an expansion tube or expansion tunnel is to determine theoretical flow quantities for the chosen mode of operation. Such a procedure is necessary in order to obtain approximate magnitudes of quantities to be measured in the various flow regions. Because of the wide range of flow conditions that may be generated in the expansion tube and the long computer times associated with the program of reference 5, the program of reference 5 was not exercised to generate a family of working plots illustrating expansion tube performance. However, the provision of such plots would be a worthwhile convenience to the experimenter and would also illustrate the versatility of such a facility. Since the present program requires much less computer time than that of reference 5 (present program is approximately 60 to 80 times faster than the program of reference 5 with a 10 species air model), working plots were generated for real-air expansion tube flows and are presented in figures 6 to 17.

Various flow quantities in region (5) (
$$p_5$$
, ρ_5 , T_5 , M_5 , and $N_{Re,5}$), region (5s) (ρ_{5s}/ρ_5), and region (t5) ($p_{t,5}$, $\rho_{t,5}$, $T_{t,5}$, $h_{t,5}$, and $q_{t,5}$ for $r_n = 2.54$ cm) are

plotted as a function of input U_5 for values of p_1 equal to 0.7, 3.45, 6.9, 34.47, 68.95, and 344.7 kN/m² in figures 6 to 11, respectively. In figures 6 to 11, the flow in region (5) is assumed to be in equilibrium and there is no shock reflection at the secondary diaphragm. These results are shown for a range of $U_{s,1}$ from 2.1 to 4.5 km/sec. The upper limit on U_{s.1} represents the highest value obtained to date in the Langley expansion tube using arc-heated helium as the driver gas. Also shown in figures 6 to 11 are values of p₁₀ required to produce the corresponding flow conditions. Figures 12 to 17 correspond to figures 6 to 11, respectively, except that a totally reflected shock at the secondary diaphragm is included. Thus, limiting cases for these shock-wave reflection phenomena are provided. The results of figures 6 to 17 were obtained by using the AEDC real-air curve-fit expressions to determine conditions in regions (2), (2r), (5s), and (t5) and the AEDC real-air tape for determination of the unsteady expansion quantities of region (5). (The reader is referred to appendix B for discussion of the computational procedures incorporated in the present program. For these results, method (2) (ISAV = 2, IEXP = 1) was employed, JAC being 100.) These figures were generated by machine and linear line segments were used to connect adjacent data points.

For purposes of illustration, let it be assumed that a study is to be performed in the expansion tube at $\,U_5\,$ equal to 5.4 km/sec and $\,M_5\,$ equal to 10. Both the case of no shock reflection at the secondary diaphragm and the existence of a totally reflected shock are considered. The driver gas is unheated helium $\left(T_4=300~\mathrm{K}\right)$ and a value of $p_1\,$ equal to 3.45 kN/m² is selected. From figures 7 and 13, flow conditions and the required $p_{10}\,$ for this example are as follows:

Condition	No shock reflection	Totally reflected shock
U _{s.1} , km/sec	2.48	2.25
p ₅ , kN/m ²	0.78	0.45
T ₅ , kK	0.76	0.75
$ ho_5, \mathrm{g/m^3} \ldots \ldots \ldots \ldots$	3.6	2.1
N _{Re.5} , m ⁻¹	5.6 × 10 ⁵	3.2×10^{5}
ρ_{5s}/ρ_{5}	11.85	12.1
p _{t,5} , kN/m ²	100.0	57.7
T _{t,5} , kK	6.0	5.9
$\rho_{t,5}^{t,3}$, g/m ³	44.5	25.7
h _{t.5} , MJ/kg	15.5	15.3
$\dot{\mathbf{q}}_{t,5}$, MW/m ²	11.6	8.8
p ₁₀ , N/m ²	1.9	1.2

The value of $U_{s,1}$ corresponding to the chosen values of U_5 and M_5 is obtained from figure 7(d) for no shock reflection and from figure 13(d) for a totally reflected shock. These $U_{s,1}$ values are, in turn, used to obtain the remaining flow quantities presented in figures 7 and 13. At this point the range of p_{10} required to generate the desired values of U_5 and M_5 for p_1 equal to 3.45 kN/m² is known. The corresponding range of p_4 required to produce this range of $U_{s,1}$, for a given p_1 , is obtained from figure 5. The pressure in region (2) is obtained from figure 18, where the quantities p_2/p_1 , ρ_2/ρ_1 , T_2/T_1 , h_2/h_1 , and s_2W_u/R (predicted by using the AEDC real-air tape) are plotted as a function of $U_{s,1}$ for the values of p_1 considered in figures 6 to 17.

Figure 19 illustrates the effect of frozen expansion, in comparison with a thermochemical equilibrium expansion, for several sample cases. These cases show a large effect of shock reflection at the secondary diaphragm on predicted frozen flow quantities. Such large differences are the result of the increase in dissociation in region (A) from the case of no shock reflection to the case of a standing shock or totally reflected shock, coupled with the assumption that the flow freezes in region (A).

As discussed previously, it is often necessary to infer the test-air—accelerationair interface velocity U_I from measured $U_{s,10}$ by using the theory of reference 6. Figure 20 shows flow quantities τ_i , τ , ℓ/ℓ_{max} , and $U_{s,10}/U_I$ as a function of non-dimensionalized distance downstream of the secondary diaphragm for a representative expansion tube test. For the results of figure 20, p_1 is equal to 3.45 kN/m², $U_{s,1}$ is equal to 2.85 km/sec, and L_a is equal to 17 m. From figure 20(b), the time a model positioned at the test section (tube exit) is subjected to acceleration-air flow diminishes with increasing U_5 . The separation distance between the incident shock in region 10 and the test-air—acceleration-air interface approaches the maximum separation distance ℓ_{max} more rapidly with increasing U_5 (fig. 20(c)). When the value of ℓ is essentially equal to ℓ_{max} , the interface velocity U_I is essentially equal to the incident shock velocity $U_{s,10}$, as illustrated in figure 20(d). For this sample case, the interface velocity is equal to the incident shock velocity (measured) at the tube exit for values of U_5 in excess of 5.0 km/sec.

Several expansion tunnel flow quantities $(p_6, T_6, U_6, M_6, N_{Re,6}, \rho_{6s}/\rho_6, and p_{t,6})$ are shown in figure 21 as a function of effective area ratio $(A/A^*)_{eff}$. Nozzle entrance conditions (conditions at $(A/A^*)_{eff}$ of unity) correspond to a representative expansion tube test (ref. 15) with unheated helium driver gas and air test gas having a value of p_1 of 3.45 kN/m². These entrance conditions were determined by assuming no shock reflection at the secondary diaphragm, no flow attenuation in the acceleration section, and a thermochemical equilibrium expansion to region (5). The tunnel results were generated, assuming quasi one-dimensional flow, by increasing input U_6 from

5.3 to 5.5 km/sec in increments of 50 m/sec and from 5.50 to 5.57 km/sec in increments of 10 m/sec. These tunnel predictions also assume a thermochemical equilibrium expansion.

The results of figure 21 may be used to obtain a rough estimate of inviscid test core diameter and corresponding nozzle exit flow quantities for given entrance conditions. For example, use the dimensions of the Langley expansion tunnel configuration and assume that the conical nozzle has an entrance diameter of 7.62 cm, an exit diameter of 63.75 cm, and a length of 1.59 m. Hence, the geometric area ratio $(A/A^*)_{geo}$ is 70 and the nozzle half angle if 10° . Now, let $(A/A^*)_{eff}$ be equal to $(A/A^*)_{geo}$, corresponding to zero tunnel wall boundary-layer displacement thickness. The quantities Mg and $N_{Re~6}$ corresponding to this first estimate of $(A/A^*)_{eff}$ may be obtained from figure 21. From these quantities, the displacement thickness at the nozzle exit may be estimated by using simple expressions in terms of M_6 and $N_{Re,6}$ based on nozzle axial distance from the nozzle apex. (See ref. 21.) (Eq. (7) of ref. 21 was used to predict $\,\delta^*\,$ for this example, where $\,\gamma_{E.6}\,$ was equal to 1.4.) Having determined an initial estimate of δ^* at the nozzle exit, a new value of $(A/A^*)_{eff}$ is calculated where the effective exit diameter is the nozzle (geometric) exit diameter minus 2δ*. At the nozzle entrance, the effective entrance diameter is assumed equal to the geometric entrance diameter and hence a constant. From figure 21, M₆ and N_{Re.6} corresponding to this new value of $(A/A^*)_{off}$ are obtained and a second value of δ^* is calculated. This iterative procedure is continued until successive values of (A/A*) eff are within a desired tolerance. For this particular example, iteration to within 2 percent on $(A/A^*)_{off}$ (three iterations required) showed that the inviscid test core diameter is approximately 48.5 cm. The corresponding values of $~\rm M_{6}~$ and $~\rm N_{Re.6}~$ are 13.2 and 7.4 $\times\,10^{4}$ per meter, respectively.

CONCLUDING REMARKS

A computer program written in FORTRAN IV language which determines shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas is presented. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, flow attenuation in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. The effects of several of these phenomena are demonstrated by sample calculations.

The usage of the program in preparing the shock tube and expansion tube for testing is illustrated from working charts. These charts, which were generated with the present program, cover a wide range of flow conditions and should prove to be a convenience for the experimenter in such facilities. The expansion tunnel phase of the program is demonstrated by a sample calculation. This program is similar to, but more comprehensive than, the real-gas mixture program previously available for air test gas. The present program requires approximately 1/70 the computer time of the gas-mixture program with no appreciable sacrifice in accuracy.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., September 4, 1974.

APPENDIX A

COMPUTER-PROGRAM INPUTS, FLOW CHART, AND LISTING WITH SAMPLE DATA PRINTOUTS

The present program is written in FORTRAN IV language for Control Data series 6000 computer systems. Minimum machine requirements are 110000 octal locations of core storage. The FORTRAN NAMELIST capability is used for data input with INP as the NAMELIST name. The units for the inputs which are physical quantities are given in the section entitled "Symbols." The program symbols and a brief description of the inputs necessary to utilize the computer program are listed as follows:

Program symbol	Description
P1	Pressure of quiescent test air in region (1)
T1	Temperature of quiescent test air in region (1)
US1	Incident-shock velocity into region (1)
P2	Static pressure in region 2
P4	Driver-gas pressure in region 4
Т4	Driver-gas temperature in region 4
U5	Velocity in region 5
P5	Static pressure in region (5)
U6	Velocity in region (6)
P 6	Static pressure in region 6
DIA	Shock tube or expansion tube diameter
DIAT	Nozzle entrance diameter
DIAN	Nozzle test-section diameter

APPENDIX A

Distance downstream of primary diaphragm XIS Distance downstream of secondary diaphragm XAS TWModel surface temperature Model nose radius BNR Facility test number RUN **NDRIV** NDRIV = 0 denotes helium driver gas NDRIV = 1 denotes hydrogen driver gas LB = 0 denotes inputs p_1 , T_1 , and $U_{s,1}$ used to find region (2) LB quantities LB = 1 denotes inputs p_1 , T_1 , and p_2 used to find region (2) quantities LB = 2 denotes inputs p_1 , T_1 , p_4 , and T_4 used to find region (2) quantities ISTET = 0 denotes only quantities in regions (2), (2s), and (2r)ISTET determined ISTET = 1 denotes shock tube and expansion tube flow quantities determined ISTET = 2 denotes shock tube, expansion tube, and expansion tunnel flow quantities determined LF = 1 denotes U_5 is basic input in region (5)LF LF = 2 denotes p_5 is basic input in region (5)LG LG = 1 denotes U_6 is basic input in region (6) LG = 2 denotes p_6 is basic input in region 6**ISAV** ISAV = 1 denotes use of AEDC real-air tape (subroutines SLOW and SEARCH) ISAV = 2 denotes use of AEDC real-air curve fits (subroutine SAVE)

APPENDEX A

INU	INU = 1 denotes use of AEDC real-air tape in determining flow nonuniformities in region (2)
	INU = 2 denotes use of AEDC real-air curve fits in determining flow nonuniformities in region (2)
IEXP	IEXP = 1 denotes use of AEDC real-air tape in determining unsteady expansion process for expansion tube
	<pre>IEXP = 2 denotes use of AEDC real-air curve fits in determining unsteady expansion process for expansion tube</pre>
JAC	Number of enthalpy increments used in unsteady expansion from region (A) for IEXP = 1 (300 maximum)
IAC	Number of pressure increments used in unsteady expansion from region (A) for IEXP = 2 (100 maximum)
IREP	IREP = 1 denotes only a single value of U_5 is of interest for given region \bigcirc quantities
	$IREP = 2$ denotes several U_5 of interest for given region \bigcirc quantities
U5I	Velocity increment for IREP = 2
NVEL	Total number of U_5 of interest for IREP = 2 (10 maximum)
DELU5	Difference between maximum and minimum interface velocity along acceleration section
LREP	LREP = 1 denotes only a single value of U_6 is of interest for given region \bigcirc quantities
	LREP = 2 denotes several U_6 values of interest for given region \bigcirc quantities
NUMU6	Total number of U_6 of interest for LREP = 2 (10 maximum)
U6I .	Velocity increment for LREP = 2

LD

LD = 1 denotes no shock reflection at secondary diaphragm

LD = 2 denotes existence of standing shock at secondary diaphragm for ISTET = 1; for ISTET = 0, LD = 2 denotes conditions in regions (2), (2s), (t2), and (2r) determined

LD = 3 denotes existence of totally reflected shock from secondary diaphragm

LD = 4 denotes all three cases (LD = 1, LD = 2, and LD = 3) are performed

To minimize the number of inputs required for running cases on the computer, inputs are assigned values within the program. These assigned values, which represent values most commonly used for data reduction in the Langley 6-inch expansion tube, are as follows:

Program symbol	Assigned value
T1	300.
DIA	0.1524
DIAT	0.0762
DIAN	0.6452
XIS	4.65
XAS	16.98
TW	300.
RUN	1.0
BNR	0.0254
NDRIV	0
LB	0
ISTET	1
LF	1
LG	1
ISAV	2
IEXP	1
JAC	50
IAC	50

APPENDIX A

Program symbol	Assigned value
IREP	2
NVEL	8
U51	400.
LD	4
INU	2
DELU5	0.
LREP	2
NUMU6	5
U6I	50.

Each of these values may be changed from its assigned value by a card change or inclusion in the NAMELIST INP. For a given LB, only the basic parameters p_1 , T_1 , and $U_{s,1}$ (LB = 0), p_2 (LB = 1), or p_4 and T_4 (LB = 2) need be included in INP. Similarly, for a given LF, only U_5 (LF = 1) or p_5 (LF = 2) need be included in INP; for a given LG, only U_6 (LG = 1) or p_6 (LG = 2) need be included in INP.

Three options exist for determining flow conditions in region (5) for LF equal to 1 or LF equal to 2. These options, in terms of inputs ISAV and IEXP, are

Option	ISAV	IEXP
(1)	1	1
(2)	2	1
(3)	2	2

APPENDIX A

The basic subroutines of this program are as follows:

- (1) SLOW determines imperfect, real-air thermodynamic quantities p, ρ , h, T, a, Z, γ_E , and Z^* from AEDC real-air tape for given sW_u/R and any one of the thermodynamic quantities
- (2) SEARCH determines imperfect, real-air thermodynamic quantities ρ , sW_u/R, T, a, Z, $\gamma_{\rm E}$, and Z* from AEDC real-air tape for given p and h
- (3) SAVE determines real-air thermodynamic quantities from AEDC real-air curve-fit expressions with combinations
 - (1) p and sW_u/R
 - (2) p and ρ
 - (3) p and h
 - (4) ρ and h
 - (5) p and T
- (4) VISC computes real-air μ for given p and T
- (5) BDT computes virial coefficients for helium or hydrogen for given T
- (6) SOLUT given (p_2, U_2) array and (p_3, U_3) array, finds solution to curves
- (7) SC iterative procedure for solving conservation relations for a moving normal shock
- (8) SNS iterative procedure for solving conservation relations for a standing shock at secondary diaphragm or a normal bow shock at a model, including stagnation-point conditions
- (9) SIMR computes $\int \left(\frac{dh}{a}\right)_{sW_u/R}$ by Simpson's rule

Langley Library Subroutines ITR1, ITR2, FTLUP, and DISCOT are used with this program and are presented as appendixes C, D, E, and F.

A flow chart of this program is given on the following pages.

A listing of this program, including subroutines and comments, is reproduced on the following pages.

```
CENT
                                                                      1250
                                                       100690
                                         D3748
JOB.1.0705.115000.20000.
                                 A3187
                                       000605575N 64720
USER MILLER CHARLES G III
LIMEONT (20000) .
RUN(S).
REQUEST. TAPES. HY.X. 716011. POL
REWIND(TARES).
SETINDE . .
LGO.
SPPRINT (OUTPUT . 3) .
UNLOAD (TAPES) .
FXITas
SPPRINT (OUTPUT+3) +
UNLOAD (TAPEB) +
       PROGRAM LETCINPUT.OUTPUT.TADES=[NPUT.TADES=OUTPUT.TADES]
       DIMENSION X(4). Y(4.9.150). 7(9). U(4). V(4). W(4). NP(4)
                                                                                  ٨
       DIMENSION TABHR (300) . TABA (300) . TABANS (300) . TABR (100) . PEG (100)
                                                                                      ۸
       DIMENSION RESULT(2). IN(4). PSK(100)
       DIMENSION TARTI(50). TARRI(50). TARRI(50). TARRI(50)
       DIMENSION TAPAL(50). TABUL(50). MA(10)
       DIMENSION USII(20). (021(20), P21(20), H21(20), PH21(20)
       DIMENSION XSLM(5). SUON(5). PRX(5). URY(5). HRX(5). TRX(5). DRY(5)
                                                                                       _
      I. APX(5). RXR(5). DYH(5). RXU(5). DXD(5). DXT(5). DYA(5)
                                                                                      , ^
       REAL MS1 . MS, MG, MGC, MY, MN, WNG, MG, MG, MGE, MGGEF, MGGEF, MD, MSC
                                                                                  ٨
                                                                                      1.1
                                                                                  ۸
       REAL MA, MAS, MAE, MASS, MASSE, MSID
       EXTERNAL FORX, FORR, FORMS, FORAX, FORRY, FORAXT, FORRXT
                                                                                   ٨
                                                                                      12
       COMMON ICOUNT . IMET (2) . NO . ARAP . ME . SAD . L. CODE . DELU . ISAV
                                                                                      13
                                                                                      14
       COMMON /BLK1/ PT4,CT4,RHOG
       COMMON /BLK2/ BII.CTI.TI.CVDI.S4P.SDEF.DETI.DCTI
                                                                                      15
                                                                                      16
       COMMON VBLKS/ T1.GAM4.W4.T4.P4.P1
                                                                                      , 7
       COMMON /BLK4/ LF . NON . LU . NOP 1 V . LB . LD . LG
                                                                                      1 2
       COMMON /BLKE/ SR.TII.AI.71.GI.K.P2.ISP
                                                                                      10
       COMMON /PLKA/ BETA1 . PETA2
       NAMELIST ZINPZ T1 +P1 +US1 +P2+LB+LD+LE+LG+US+P5+P6+U6+P4+T4+TAC+RUN+
                                                                                      20
       TISTET . DIA . NDRIV . XIS . XAS , TW . BND . TEAV , TEYD . USI . IDED . NVEL . INH . DIAT . DI
                                                                                      21
       SAN . LREP . NUMUE . UET . JAC . OF LUE
                                                                                      22
        CALL DAYTIM (RESULT)
                                                                                      24
                                                                                      25
                                                                                   A
        SHOCK TURE PHASE
 Ċ
                                                                                      26
 C
                                                                                   Δ
                                                                                      27
        NDRIVEO DENOTES IMPEREECT HELIUM DRIVER GAS
 C.
                                                                                      28
                                                                                   ٨
        NDRIV-1 DENOTES IMPERENCE HYDROGEN GAS
 \overline{\phantom{a}}
                                                                                      20
                                                                                   ٨
                                                                                       30
 C
        LB=0 DENOTES SHOCK TUBE IMPUTS P1.T1.4US1
 C
                                                                                       21
        LB=1 DENOTES SHOCK TUBE INDUTS D1.T1.D2
                                                                                   ٨
                                                                                       22
  C
        LRES DENOTES SHOCK TUBE INDUITS DISTINDATA
                                                                                       27
                                                                                   ٨
                                                                                       24
        XIS IS DISTANCE DOWNSTREAM EROM PRIMARY DIAPHRAGM
  C
                                                                                       - ←
        XAS IS DISTANCE DOWNSTREAM FROM SECONDARY DIAPHRACM
  c
                                                                                       36
  C
                                                                                    ٨
                                                                                       27
        DIA IS SHOCK TURE OR EXPANSION TURE DIAMETED
                                                                                       20
  C
                                                                                    ۸
        DIAT IS NOZZLE THROAT DIAMETER
  C
                                                                                       20
        DIAN IS NOZZLE TEST SECTION DIAMETER
  C
                                                                                    Δ
                                                                                       40
  C
                                                                                    ٨
                                                                                       4 1
         ISTET DENOTES PHASE(S) CALCULATED
  C
                                                                                       42
         ISTET=0 DENOTES SHOCK TUBE PHASE ONLY
  C
                                                                                       42
         ISTET=1 DENOTES EXPANSION TUBE PHASE
  Ċ
                                                                                    ٨
                                                                                       44
         ISTET=2 DENOTES EXPANSION TUNNEL DHASE
                                                                                       4 =
                                                                                    ٨
  ^
         ISAVEL DENOTES USE OF REAL AIR TARE (SLOW, SEARCH)
                                                                                       16
                                                                                       47
  C
         ISAVES DENOTES USE OF AFOC CURVE FITS (SAVE)
```

APPENDEX A

```
c
                                                                                     AΒ
       INUEL DENOTES USE OF TAPE FOR FLOW MONUMIFORMITY CALC IN RECTON 2
 c
       INUES DENOTES USE OF CURVE FITS FOR FLOW NONUNIFORMITY IN REGION 2
                                                                                     4 O
 C
                                                                                     50
 Ċ.
                                                                                     = 1
 ¢
       LD#1 DENOTES INCIDENT SHOCK ONLY
                                                                                 ٨
                                                                                    = 2
 _
       LD=2 DENOTES STANDING SHOCK ONLY
                                                                                 ٨
                                                                                    --
       LD=3 DENOTES REFLECTED SHOCK ONLY
 C.
                                                                                    ≂⊿
                                                                                 ٨
       LD=4 DENOTES INCIDENT. STANDING. AND REFLECTED SHOCKS
 C
                                                                                    55
 C
                                                                                    56
       FOR ISTET=0 AND LD=2, COMPITIONS IN REGIONS 2.25.21.20 DETERMINED
 _
                                                                                 ٨
                                                                                    --
 c
                                                                                    -0
       IFXP=1 DENOTES USE OF TAPE FOR UNSTEADY EXPANSION
 Ċ
                                                                                    =0
 ^
       IFXP=2 DENOTES USE OF CURVE FITS FOR UNSTEADY EXPANSION
                                                                                 ٨
                                                                                    40
 _
                                                                                 ٨
                                                                                    c 1
       JAC 15 NUMBER OF INCREMENTS USED IN HINSTEADY EXPANSION FOR JEYDES
 C
                                                                                 ٨
                                                                                    K >
 C
       JAC HAS MAXIMUM VALUE OF 300
                                                                                    43
 _
                                                                                    51
       TAC IS NUMBER OF INCREMENTS USED IN UNSTEADY EXPANSION FOR TEXPER
 C
                                                                                 ٨
                                                                                    45
 _
       TAC HAS MAXIMUN VALUE OF 100
                                                                                 ٨
                                                                                    . .
 ¢
                                                                                 ۸
                                                                                    6.7
       DELUE IS ATTENUATION IN INTERFACE VELOCITY HE. MASEC
 C
                                                                                 ٨
                                                                                    4.0
_
                                                                                 ٨
                                                                                    40
       IREP = 1 DENOTES SINGLE VALUE OF US OF INTEREST
C
                                                                                 ٨
       IREP=2 DENOTES SEVERAL US OF INTEREST
Ċ
                                                                                 ٨
                                                                                    7,
~
                                                                                    マラ
                                                                                 ۸
C.
       U51 IS U5 INCREMENT FOR IREP=2
                                                                                 ٨
                                                                                    --
C
       NVEL IS TOTAL NUMBER OF US OF INTEREST FOR IREP=>
                                                                                    74
                                                                                 ۸
Ċ
                                                                                    75
       LREP=1 DENOTES SINGLE VALUE OF US OF INTEREST
C
                                                                                 ٨
                                                                                    76
       LREP#2 DENOTES SEVERAL US OF INTEREST
\mathbf{c}
                                                                                    77
                                                                                 ٨
Ċ
                                                                                    70
                                                                                 ۸
C
       UST IS US INCREMENT FOR LOFD=2
                                                                                 ۸
                                                                                    70
C
       NUMBER OF THE OF THEREST FOR LEFT-2
                                                                                 ٨
                                                                                    90
_
                                                                                 ٨
                                                                                    01
       1T=8
                                                                                 ٨
       NV=0
                                                                                    д٦
                                                                                 ۸
       RU=8.31434E+3
                                                                                 ۵
                                                                                    24
       W=28.967
                                                                                 ٨
                                                                                    0 =
       MMEC
                                                                                 ٨
                                                                                    RE
       READ (5+234) IN
                                                                                    97
      US1=P2=P4=T4=US=P5=UA=P6=0FLUS=0.0
                                                                                 Δ
                                                                                    00
       NN=NNN=LB=NDPIV=0
                                                                                 ٨
                                                                                    яQ
      NMN=RUN=1STFT=LF=1FxP=LG=1SP=1
                                                                                 ٨
                                                                                    96
       ISAV=1RFP=LRFP=1NU=2
                                                                                 ٨
      LD=4
                                                                                 ٨
                                                                                    02
      NVFL =8
                                                                                 ٨
                                                                                    0.3
      NUMU6=5
                                                                                    O A
                                                                                 ٨
      JAC=TAC=50
                                                                                    05
      T1=TW=300.
                                                                                 ٨
                                                                                    96
      DIA=-1524
                                                                                    07
                                                                                 ٨
      DIAT=.0762
                                                                                    OB
      DIAN=+6452
                                                                                    00
                                                                                 ٨
      XIS=4.65
                                                                                 ٨
                                                                                   100
      X45=16.00
                                                                                   101
      BNR= .0254
                                                                                 A 102
      U51=400.
                                                                                 A 103
      U61=50.
                                                                                 A 104
      READ (5. INP)
                                                                                 A 105
      IF (ENDEILE 5) 144.2
                                                                                 1 1 1 1 1
2
      CONTINUE
                                                                                A 107
      PRINT 235. RESULT(1)
                                                                                A TOP
      PRINT 234, IN
                                                                                4 149
      PRINT 148
                                                                                A 110
      PRINT 140
                                                                                4 111
      PRINT 150
                                                                                A 112
      PRINT 151
                                                                                A 113
```

```
A 114
                                                                                A 11=
      PRINT 153. RUN.P1.TI.US1.P2.P4.T4.YIS.DIA.TSAV.INH.LD
                                                                                A 116
      IMFT(1)=IMFT(2)=0
                                                                                A 117
      LCODE=1
                                                                                A 118
      SSUM=0.
                                                                                 A 110
      LUES
                                                                                 A 120
      K=a
                                                                                A 121
      HW=1.0046E+3#TW
                                                                                V 155
      RH01=(P1*W)/(RU*T1)
                                                                                 A 123
      H1=3.49#{RU/W)*T1
                                                                                 A 124
      A1=SQRT(1.4*(RU/W)*T1)
                                                                                 1 125
      IF (LB.FO.2) GO TO 4
                                                                                 1 126
                                                                                 A 127
C
      INPUTS PIO TIO AND USI(LP=0)
\overline{\phantom{a}}
                                                                                 A 128
      INPUTS PI. TI. AND PRILP=1)
                                                                                 A 120
                                                                                 A 130
      CALL SC (RHO2.U2.P2.H2.RHO1.USI.P1.H1.ISAV)
                                                                                 A 131
      S2R#SR
      TPHTII
                                                                                 4 132
                                                                                 A 123
      45=41
                                                                                 A 134
      72=71
                                                                                 V lac
      GAM2=GT
                                                                                 A 136
      M2=U2/A2
                                                                                 A 137
      MS1=US1/A1
                                                                                 A THR
      RE2=0.0
                                                                                 A 170
      CALL VISC (T2.P2.VIS2)
                                                                                 A 147
      IF (VIS2.FQ.1.0) GO TO 3
                                                                                 A 141
      RE2=RH02#U2/V152
                                                                                 A 142
3
      CONTINUE
                                                                                 A 147
      GO TO 31
                                                                                 A 104
                                                                                 A 145
C
      INPUTS P4. T4. P1. AND T1(LB=2)
                                                                                 A 146
\mathbf{C}
                                                                                 8 147
4
      しりまさり
      R=8.31434F+3
                                                                                 Δ
                                                                                   148
                                                                                 V 190
      IF (MORIV.FO.1) GO TO 5
                                                                                 4 150
                                                                                 A 151
      HELIUM DRIVER GAS (NDRIV=0)
C
                                                                                 A 152
                                                                                 4 163
      HWRT=2.5
                                                                                 A 154
      CVR1=1.5
                                                                                 ٨
                                                                                   155
      SRFF=4.B024
                                                                                 1 156
      GAM4=1.66667
                                                                                 A 157
      W4=4.003
      RHOG= (P4#W4)/(R#T4)
                                                                                 A TEA
      ALOW=.70#RHOG
                                                                                 A 159
                                                                                 4 160
      60 TO 6
                                                                                 A 161
      HYDROGEN DRIVER GAS(NORIV=1)
                                                                                 A 162
Ċ
                                                                                   147
                                                                                 A 164
      HWRT=3.5
                                                                                 A 165
      CVR1=2.5
      SREF=-1 .0363
                                                                                 A ISS
                                                                                 A 167
      GAM4=1 .4
                                                                                 A 168
      W4=2.016
                                                                                   169
                                                                                 Δ
      RHOG=(P4*W4)/(R#T4)
      ALOW= .50*RHOG
                                                                                 ٨
                                                                                   170
                                                                                 A 171
      AUP=1.05*RHOG
                                                                                 A 172
      DELIX# (AUP-ALOW)/100.
                                                                                 8 177
      E1=.1F-6
      CALL BDT (BT4.CT4.DBT4.DCT4.D2BT4.D2CT4.T4)
                                                                                 A 174
      RHO4=1.2#RHOG
                                                                                 A 175
                                                                               A 176
      CALL ITR1 (RHO4.DFLTX.FOFX.F1.E1.200.ICODE)
                                                                                 A 177
      IF (ICODE) 7.10.7
      GO TO (8.9.9.9) - 1CODE
                                                                                 A 178
7
                                                                                 A 170
      PRINT 154
а
                                                                                 A 180
       GO TO 1
```

```
9
      PRINT 155. ICODE
                                                                               A 181
      GO TO 1
                                                                                 182
1.0
      Z4=1 + RH04*BT4+RH04**2*CT4
                                                                               A 183
      H4=(R*T4/W4)*(HWRT+RH04*(RT4-T4*DRT4)+(RH04**2/2.)*(2.*CT4-T4*DCT4
                                                                               A TRA
     111
                                                                               A TAR
      S4R=CVRI*ALOG(T4)-ALOG(RHO4)-RHO4*(RT4+T4*D8T4)-(RHO4**2/2*)*(CT4+
                                                                               A TAK
     1T4#DCT4)+SREE
                                                                               A 187
      CVR=CVRI-T4*(RH04*(2.*DBT4+T4*D2BT4)+(RH04**2/2.)*(2.*DCT4+T4*D2CT
                                                                               Δ
                                                                                 1.88
                                                                               A 180
      PPTR={RH04*R/W4)*(1=+RH04*(BT4+T4*DBT4)+(PH04**2)*(CT4+T4*DCT4)}
                                                                               A 190
      PPRT=(T4*R/W4)*(1.+2.*RH04*BT4+3.*RH04**2*CT4)
                                                                               A 191
      A4=SQRT(PPRT+((T4*W4)/(CVR*R*RH04**2))*PPTP**2)
                                                                               A 192
      TART1(1)=T4
                                                                               EP1 A
      TABP!(1)=P4
                                                                               A 194
      TARRI(1)=RHC4
                                                                               A 105
      TARZI (1)=24
                                                                               A 196
      TARH1(1)=H4
                                                                               ٨
                                                                                 197
      TARAI(I)=1./A4
                                                                               A
                                                                                 108
      TSC=ALOGIO(T4)
                                                                               A 100
      DELT=TSC/50.
                                                                               ∆ 200
      NU≖1
                                                                               A 201
      DO 11 1=2,50
                                                                               A 202
      TABTI(I)=TSC-FLOAT(I-1)*DFLT
                                                                               A 203
      TABTI(1)=10.**TABT[(1)
                                                                               A 204
11
      CONTINUE
                                                                               A 205
      AUP=1 • 1 *RHQ4
                                                                               A 206
      ALOW=1.E-6
                                                                               A 207
      DELR=(AUP-ALOW)/200.
                                                                               ٨
                                                                                 208
      RI=RH04
                                                                               A 209
      DO 17 1=2.50
                                                                               A 210
      TI=TABTI(I)
                                                                               A 211
      IF (TI.LT.3.) GO TO 18
                                                                               A 212
      CALL BDT (BTI+CTI+DBTI+DCTI+D2BTI+D2CTI+TI)
                                                                               A 213
      CALL ITR2 (RI.ALOW.AUP.DELR.FOFR.FI.F1.400.ICODE)
                                                                               A 214
      IF (ICODF) 12+16+12
                                                                               A 215
      GO TO (13+14+14+15)+ 1000F
12
                                                                               A 216
13
      PRINT 154
                                                                               A 217
      GO TO 1
                                                                               A 219
      PRINT 155+ ICODE
14
                                                                               4 219
      GO TO 1
                                                                               A 220
15
      PRINT 156. ICODE:RI-DELR
                                                                               A 221
      GO TO 1
                                                                               A 222
16
      TARRI(!)=R!
                                                                               A 223
      TABZI(I)=1++RI+BT1+RI*+2*CTI
                                                                               A 224
      TABPI(1)=T1*(R/W4)*R1*TABZ1(1)
                                                                               A 225
      TABH!(I)=(R*T!/W4)*(HWRT+RI*(BTI-T[*DBTI)+(RI**2/2*)*(2**CTI-TI*DC
                                                                               A 226
     1T111
                                                                               ۸ 227
      CVIR=CVRI-TI*(RI*(2.*DBTI+TI*D2BTI)+(RI**2/2.)*(2.*DCTI+TI*D2CTI))
                                                                               A 22P
      PPTRI=(RI*R/W4)*(1.+PI*(RTI+TI*DBTI)+(RI**2)*(CTI+TI*DCTI))
                                                                               A 229
      PPRTI=(TI*R/W4)*(1.+2.*RT*BTI+3.*RT**2*CTI)
                                                                               V 530
      TABA1(1)=1./(SORT(PPRTI+((T1*W4)/(CVIR*R*R1**2))*PPTR1**2))
                                                                               A 231
      NU=NU+1
                                                                               A 227
17
      CONTINUE
                                                                               V 513
18
      CALL SIMR (TABHI. TARAI. NU. NU. TABANS)
                                                                               A 234
      PRINT 157
                                                                               A 235
      DO 19 1=1.NU
                                                                               A 236
      PRINT 158. TABPI(I).TABTI(I).TABRI(I).TABZI(I).TARHI(I).TARAI(I).T
                                                                               A 237
     I ARANG (T)
                                                                               A 228
19
      CONTINUE
                                                                               V 530
      MS=1.4
                                                                               A 240
      DELS=•2
                                                                               A 241
      CALL ITRI (MS.DELS.FOFMS.FI.E1.200.ICODF)
                                                                               A 242
      IF (ICODE) 20,23,20
                                                                               A 243
20
      GO TO (21,22,22), ICODE
                                                                               A 244
      PPINT 154
21
                                                                               A 205
      GO TO 1
                                                                               A 246
```

```
A 247
22
      PRINT 155% ICODE
                                                                               A 249
      GO TO 1
                                                                               Δ
                                                                                 249
23
      A1=SORT (401 - 8399T1)
                                                                               A 250
      USMAX=1.1#A1#MS
                                                                                 251
      USMIN= . 65#USMAX
                                                                               A 252
      USIT(1)=USMAX
                                                                               A 242
      DEL1=(USMAX-USMIN)/20.
                                                                               A 254
      PRINT 159
                                                                                A 255
      DO 24 1=1.20
                                                                                A 256
      USIT(I)=USMAX-FLOAT(I-1)*DFLI
      CALL SC (RH21(1):U21(1):P21(1):H21(1):RH01:US11(1):P1:H1:ISAV)
                                                                                A 267
                                                                                A 268
      PRINT 160. P21(I).RH21(I).H2I(I).U2I(I).US1I(I)
                                                                                A 250
24
      CONTINUE
                                                                                A 260
      CALL SOLUT (TABANS. TABPI. U21. P21. NU. 20. UR. P)
                                                                                ß
                                                                                  261
      P2=P
                                                                                A 262
      112=11P
                                                                                A 267
      US1=(P2-P1)/(RH01*U2)
                                                                                A 264
      MS1=US1/A1
                                                                                A 265
      H2=H1+.5#US1##2-.5#(US1-U2)##2
                                                                                A 255
      GO TO (25,26), ISAV
                                                                                A 267
      CALL SEARCH (P2.RHO2.H2.S2R.T2.A2.72.GAM2.752.TSP)
25
                                                                               A 260
      GO TO 27
                                                                                A 269
      CALL SAVE (PRORHOSOH2OSEROTEGAROZOS)
26
                                                                                A 270
      ZS2=72
                                                                                A 271
27
      M2=U2/A2
                                                                                A 272
      RF2=0.0
                                                                                A 273
      CALL VISC (T2.P2.VIS2)
                                                                                A 274
      IF (VIS2°F0°1°0) GO TO 28
                                                                                A 275
      RE2=RH02#U2/V152
                                                                                ٨
                                                                                  276
28
      CONTINUE
                                                                                  277
                                                                                Δ
      IF (LB.NE.2) GO TO 31
                                                                                8 279
      IF (NORIV.EQ.O) GO TO 29
                                                                                A 270
      PRINT 151
                                                                                A 280
      GO TO 30
                                                                                  281
29
      PRINT 162
      PRINT 163
                                                                                A 202
30
                                                                                A 283
      PRINT 164
                                                                                  294
                                                                                ٥
       PRINT 165. P4.RH04.T4.H4.S4R.Z4.A4.W4
                                                                                V 282
31
      PRINT 147
                                                                                A 286
      PRINT 166
                                                                                A 287
       PRINT 147
                                                                                A 288
      PRINT 167
                                                                                A 289
      PRINT 168. P2.RHO2.T2.H2.S2R.72.GAM2.A2.U2.M2.RF2
                                                                                  200
                                                                                Α
      PAP=P2/P1
                                                                                  201
                                                                                A
      RARHO=RHO2/RHC1
                                                                                A 202
      RATET2/T1
                                                                                  203
                                                                                Λ
      DAH=H27H1
                                                                                  204
       QA4=42/81
                                                                                  295
                                                                                Δ
       PRINT 169
                                                                                  206
                                                                                ٨
       PRINT 170
                                                                                  207
       PRINT 171. RAP . RARHO . RAT . RAH . RAA . MS1 . US1
                                                                                Α
                                                                                  298
c
       SHOCK TUBE TEST TIME-REFERENCE MIRELS(PHYS OF FLUIDS-SEPT 1963)
                                                                                Λ 299
C
                                                                                ٨
                                                                                  300
c
                                                                                  301
                                                                                Δ
       PRINT 172
                                                                                Δ
                                                                                   302
       PRINT 173
                                                                                   303
       IF (MS1.GF.4..AND.MS1.LF.14.) GO TO 32
                                                                                Α
       IF (MS1.6T.14.) 50 TO 33
                                                                                Λ
                                                                                   304
                                                                                   3/15
                                                                                ٨
       PRINT 174
                                                                                  305
       60 TO 55
                                                                                Α
                                                                                  307
 C
                                                                                A BAR
       XLMAX IS MAXIMUM SEPARATION DISTANCE-SHOCK TO INTERFACE
 C
                                                                                  309
       XL IS SEPARATION DISTANCE-SHOCK TO INTERFACE
                                                                                Δ
 ¢
                                                                                ٨
                                                                                   310
 Ċ
                                                                                Α
                                                                                   311
       LAMINAR CASE
 Ċ.
                                                                                ٨
                                                                                   312
 Ċ
```

```
XI MAX=P1*D1A**2*(2.06~.2056*MS1+8.095F-3*MS1**2)
32
                                                                               A 313
      GO TO 34
                                                                               A 314
      XLMAX=P1*D1A**2*(.8723-7.488F-3*MS1)
33
                                                                               Δ 315
      BETA1 = XIS*RHO1/(2.*XI MAX*RHO2)
34
                                                                               A 316
      BETA2=2.#RH02/RH01
                                                                               A 317
      AXUP= 999999999
                                                                               4 31A
      AXLOW= .00001
                                                                               4 319
      DELTAX= (AXUP-AXLOW)/100.
                                                                                 320
                                                                               ٨
      F1=-1F-6
                                                                               A 321
      AX=.5
                                                                               A 322
      CALL ITR2 (AX*AXLOW*AXUP*DFLTAX*F0FAX*F1*F1*200*1C0DF)
                                                                               A 323
      IF (ICODE) 7:35:7
                                                                               A 324
C
                                                                               4 325
c
      RXL IS RATIO OF XL TO XLMAX
                                                                               A 326
                                                                               A 397
35
      RXL=AX**2
                                                                               ٨
                                                                                 328
      XL=RXL*XLMAX
                                                                               A 320
Ċ
                                                                               A 330
C
      TAUL IS IDEAL TEST TIME
                                                                               A 331
r
                                                                               V 335
      TAUI=RH01*X1SZ(RH02*U2)
                                                                               A 333
c
                                                                               A 334
c
      BX IS SORT OF US1*TAU/XLMAX
                                                                                 335
                                                                               Δ
~
                                                                               A 336
      BXUP= . 999999999
                                                                               A 337
      9X1 0W= . 00001
                                                                               A TTR
      DELIBX=(BXUP-BXLOW)/100.
                                                                               A 330
      BX=•5
                                                                               A 340
      CALL ITRE (BY.BXLOW.BXUP.DFLTBX.F0FBX.E1.E1.200.ICODE)
                                                                               A 341
      IF (ICODE) 7:36:7
                                                                               A 342
36
      TAU=BX##2#XLMAXZUS1
                                                                               ٨
                                                                                 343
      UI=XL/TAU
                                                                               Δ
                                                                                 744
C
                                                                               A 345
•
      TURBULENT CASE
                                                                               A 346
_
                                                                               A 3A7
      IF (MS1+GF+4++AND+MS1+LT+10+) GO TO 37
                                                                               A 348
      IF (MS1.GE.10.) GO TO 38
                                                                               A 349
      PPINT 174
                                                                                 350
      60 TO 55
                                                                               A 351
      XLM4XT=(P1*#+25)*(D1A*#1+25)*(5+2729-+751385*MS1++03435*MS1*#2)
37
                                                                              A 352
      CO TO 39
                                                                               A 353
30
      XLMAXT=(P1**+25)*(D1A**1+25)*(1+5464-+030174*MS1)
                                                                               A REA
39
      DELAXT=DELTAX
                                                                               A 355
      AXT=-5
                                                                               A 356
      BETA1=XIS*RHO1/(2.*XLMAXT*RHO2)
                                                                               A 357
      CALL ITRE (AXT.AXLOW.AXUP.DELAXT.EDEAXT.E1.E1.200.ICODE)
                                                                                 758
                                                                               Δ
      IF (100DE) 7.40.7
                                                                               A 350
C
                                                                               A 360
      PXLT IS RATIO OF XLT TO LIMAXT(TURBULENT CASE)
C
                                                                               A 361
                                                                               A 342
40
      RXLT=AXT**5
                                                                               A 363
      XLT=RXLT#XLMAXT
                                                                               A 364
      EXTUP= . 999999999
                                                                               4 365
      BXTLOW= • 00001
                                                                               A 366
      DELBXT = (BXTUP-BXTLOW)/100.
                                                                               ٨
                                                                                 367
      BXT=45
                                                                               A 368
      CALL ITR2 (BXT.BXTLOW.BXTUP.DELBXT.FOFBXT.F1.E1.200.ICODE)
                                                                               A 349
      IF (ICODE) 7.41.7
                                                                               A 370
41
      TAUT=BXT##5#XLMAXT/US1
                                                                               A 371
      UTT=XLT/TAUT
                                                                               A 372
      PRINT 175. XLMAX.XL. RXL. +TAULUI. XLMAXT. XLT. PXLT. +TAUT. TAUIT.
                                                                               A 373
      IF (ISTET NF . 0) GO TO 55
                                                                               A 374
                                                                               A 375
C
      SHOCK TUBE FLOW NONUNIFORMITY-LAMINAR CASE
                                                                               A 376
                                                                               A 377
```

```
A 378
      IF (RXL. GE. 0.9) GO TO 42
                                                                               Δ 379
      PRINT 176
                                                                                 380
                                                                               Δ
      GO TO 50
                                                                                 381
42
      PRINT 177
                                                                               A JAP
      PRINT 178
                                                                                 787
      PRINT 179
                                                                                 384
Ċ
                                                                                 385
                                                                               ٨
C
      FUD IS RATIO OF X5 TO XL
                                                                                 304
•
                                                                                 727
                                                                               ٨
      MNM=0
                                                                                 300
      FUD= 2
                                                                                 390
                                                                               Α
      XSLM(1)=FUD*RXL
                                                                                 300
                                                                               Α
      DO 49 !=1.5
                                                                                 301
      BNON(1)=RHO2*(US1-U2)*(1.-SQRT(XSLM(1)))
                                                                               A 392
43
      CNON=H2++5# (US1-U2)##2
                                                                                 303
                                                                               ۸
      DNCN=P2+RH02*(US1-U2)**2
                                                                               Δ
                                                                                 704
      R2x(1)=1.01#RH02
                                                                                 305
      U2x(1)=USI-BNON(1)/R2X(1)
44
                                                                                 306
                                                                               ٨
      GO TO (45,47) INU
                                                                                 397
                                                                               Δ
      H2X(1)=CNON-65#(US1-U2X(1))##2
45
                                                                               A 398
      Z(4)=ALOG10(H2X(1)/287.0245)
                                                                               A 399
      IMFT(1)=IMFT(2)=0
                                                                               A 400
      CALL SLOW (S2R.Z.4.2.IT.NV.NERR.Y.X)
                                                                               A 401
      R2XN=(10.4#Z(2))#1.2914889
                                                                               8 402
      IF (ABS(1.-R2X(1)/R2XN).LF..001) 60 TO 46
                                                                               A 403
      R2X(I)=R2XN
                                                                               A 404
      GO TO 44
                                                                               A 405
      Z(2)=ALOG10(R2X(1)/1.2914889)
46
                                                                               A 406
      CALL SLOW (S2R.Z.2.1.IT.NV.NERR.Y.X)
                                                                               A 407
      T2x(1)=Z(1)
      CALL SLOW (SZR.Z.Z.3.IT.NV.NERR.Y.X)
                                                                               4 408
                                                                               A 400
      P2X(1)=(10.##Z(3))#1.013245F+5
                                                                               A 410
      CALL SLOW (S2R.Z.2.6.IT.NV.NERR.Y.X)
                                                                               A 411
      A2x(1)=Z(6)*331.4193
                                                                               A 412
      GO TO 48
                                                                               A 417
C
      INU=1 BASED ON ENERGY EQ. AND INU=2 BASED ON MOMENTUM EQ.
                                                                                A 414
¢
                                                                               A 415
C
                                                                                8 415
      P2X(1)=DNON-R2X(1)#(US1-U2X(1))##2
47
      CALL SAVE (P2X(I) .R2XN.H2X(I) .S2R.T2X(I) .A2X(I) .Z2X.GAM2X.I)
                                                                               8 417
                                                                                A 418
      IF (ABS(1.-R2X(1)/R2XN).LF..001) 60 TO 48
                                                                                A 410
      R2x(1)=R2XN
                                                                                A 420
      GO TO 44
                                                                                4 421
      RXR(I)=R2X(I)/RH02
48
                                                                                A 422
      RXHIT )=H2X(I)/H2
                                                                                A 423
      RXU(I)=U2X(I)/U2
                                                                                8 424
      RXP(1)=P2X(1)/P2
                                                                                A 425
      RXT(1)=T2X(1)/T2
                                                                                A 426
      RXA([)=A2X([)/A2
      PRINT 180 . XSLM([]) RXP([]) RXR([]) RXT([]) RXH([]) RXA([]) PYU([]).
                                                                                A 427
                                                                                A APP
      IF (MNM.EQ.1) GO TO 52
                                                                                6 429
      FUN=FUN+02
                                                                                A 430
      XSLM(I+1)=FUDPRXL
                                                                                A 471
      CONTINUE
49
                                                                                8 432
¢
       SHOCK TUBE FLOW NONUNIFORMITIES-TURBULENT CASE
                                                                                A 433
C
                                                                                A 434
C
                                                                                A 435
       IF (RXLT.GE.O.9) GO TO 51
50
                                                                                1 476
       PRINT 181
                                                                                A 437
      GO TO 54
                                                                                A ATA
      PRINT 182
51
                                                                                A 439
      PRINT 178
                                                                                A 440
      PRINT 179
                                                                                8 441
      FUD= .2
      XSLM(1)=FUD#RXLT
                                                                                A 442
       00 53 1=1.5
                                                                                8 443
```

```
BNON(1)=RHO2*(US1-U2)*(1.-(XSLM(1))**.8)
                                                                                . . . .
      MNM=1
                                                                                A 445
      GO TO 43
                                                                                1 446
52
      FUD=FUD+∙2
                                                                                A 447
      XSLM(1+1)=FUD*RXLT
                                                                                A 448
53
      CONTINUE
                                                                                A 449
C
                                                                                A 450
~
      STANDING OR REFLECTED SHOCK AT SECOND DIAPHRAGM
                                                                                A 451
c
                                                                                A A52
54
       IF (LD.EQ.1.AND.ISTFT.FQ.0) GO TO 1
                                                                                A 453
55
      GO TO (57.56.60.57). LD
                                                                                A 454
C
                                                                                A 455
c
      STANDING SHOCK PHASE
                                                                                1 456
^
                                                                                A 467
      CALL SNS (RHOA. UA.PA.HA.SAR.TA.AA.ZA.GAMA.ZSTARA.MA.RHOZ. (12.DZ.HZ.
56
                                                                                4 458
     1HT2.PT2.RT2.ST2R.TT2.AT2.ZT2.GT2.ZST4RT21
                                                                                A AGO
      HUD=HA
                                                                                A 460
      NMN=2
                                                                                A A ...
      GO TO 58
                                                                                1 160
                                                                                A 463
c
      CONDITIONS IN REGION A FOR NO STANDING SHOCK
                                                                                A 464
C
                                                                                A AES
= -
      PA=P2
                                                                                A 455
      RHOA=RHO2
                                                                                A 467
      TA=T2
                                                                                A 468
      SAR=S2R
                                                                                A 440
      HA≃H2
                                                                                A 470
      HUD-HA
                                                                                A A71
      44=42
                                                                                A 472
      114 =112
                                                                                A 473
      ZA=72
                                                                                A 474
      GAMA=GAM2
                                                                                A 475
      754=752
                                                                                A 476
58
      MA =LTAZAA
                                                                                A 477
      JFQ=1
                                                                                A 478
      REA=0.0
                                                                                A 470
      CALL VISC (TA.PA.VISA)
                                                                                A 490
      IF (VISA.FQ.1.0) GD TO 59
                                                                                A 481
      REA=RHOA*UA/VISA
                                                                                A 482
50
      CONTINUE
                                                                                A 483
      IF (LD.E0.1) GO TO 66
                                                                                A 484
      IF (LD.EQ.4.AND.NMN.EQ.1) GO TO 66
                                                                                A 485
      PRINT 147
                                                                                A 484
      PRINT 183
                                                                                A 487
      PRINT 147
                                                                                A 488
      PRINT 167
                                                                                A 480
      PRINT 168. PA.RHOA.TA.HA.SAR.ZA.GAMA.AA.UA.MA.REA
                                                                                A 400
      IF (ISTET.NF.O) GO TO 65
                                                                                A 491
C.
                                                                                A 492
      STAGNATION CONDITIONS BEHIND STANDING SHOCK IN SHOCK TURE
C
                                                                                A 493
C
                                                                                A 494
      OT2=3+8798E+4*SORT (PT2/BNR)* (HT2-HW)
                                                                                A 405
      PRINT 184
                                                                                A 496
      PRINT 185
                                                                                A 497
      PRINT 212, PT2.RT2.TT2.HT2.SAR.ZT2.GT2.AT2.OT2.BNR
                                                                                A 498
C
                                                                                A 499
C
      REFLECTED SHOCK PHASE
                                                                                A 500
C
                                                                                4 501
60
      RH0R=10.*RH02
                                                                                A 502
      NMN=3
                                                                                A 503
61
      UR=U2/(RHOR/RHO2-1.1
                                                                                A MA
      PR=P2+RHO2*((U2+UR)**2)-RHOR*UR**2
                                                                                A 505
      HR=H2++5*((U2+UR)**2)-+5*UR**2
                                                                                A 506
      GO TO (62.63) . ISAV
                                                                                A 507
```

```
A 508
      CALL SEARCH (PRORNEWOHROSARROTROAROZROGAMROZSPOISP)
62
                                                                               A 509
      GO TO 64
                                                                               A 510
      CALL SAVE (PRORNEWOHROSARROTROAROZROGAMROS)
63
                                                                               Δ 511
      ZSR=7R
                                                                               A 512
      IF (ABS(1.-RNEW/RHOR).LE..001) GO TO 65
64
                                                                               A 513
      RHOR=RNEW
                                                                               A 514
      GO TO 61
                                                                               A 515
65
      RHORERNEW
                                                                               A 516
      MR=RFAR=UR=0.0
                                                                               A 517
      PRINT 147
                                                                                 FIR
                                                                               Δ
      PRINT 186
                                                                                 519
      PRINT 147
                                                                               A 520
      PRINT 167
      PRINT 168, PRORHOROTROHROSARROZROGAMROAROUPOMPORFAR
                                                                               A 521
                                                                               A 522
      PAEPR
                                                                               A 523
      RHOA=RHOR
                                                                                A 524
      TARTO
                                                                               A 525
      HA-UD
                                                                                A 526
      HUP=HP
                                                                                  527
      SARESARR
                                                                                A 528
      7A = 7D
                                                                                A 529
      CAMARCAMD
                                                                                A 530
      AAHAR
                                                                                A 571
      tin=n.0
                                                                                A 532
      ZSA=ZSR
                                                                                A 533
      0 \land 0 = AM
                                                                                ۸
                                                                                  534
      [FQ=1
                                                                                A 535
      IF (ISTET-E0.0) GO TO 1
66
                                                                                A 526
-
                                                                                A 537
^
      EXPANSION TURE PHASE
                                                                                A 538
C
                                                                                A 539
      LE=1 DENOTES US IS BASIC INPUT
C
                                                                                A 540
      LF=2 DENOTES PS IS BASIC INPUT
C
                                                                                A 541
c
                                                                                A 542
Ċ
                                                                                A 543
      FROZEN FLOW- EXPANSION TUBE
C
                                                                                A 544
C
                                                                                A 545
      PRINT 147
                                                                                4 546
      PRINT 187
                                                                                A 547
      PRINT 146
                                                                                A SAR
      PRINT 188
                                                                                A 5A9
      PRINT 189
      [F(LF.FQ.1) P5=0.0
       IF(LF.ED.2) U5=0.0
      PRINT 190. U5.P5.XAS.DELUS.ISAV.IFXP.IRFP.NVFL.IAC.JAC
                                                                                A 550
                                                                                A 551
      ALPHA=ZA-1.
67
                                                                                A 552
      GAMACT=(7.+3.*ALPHA)/(5.+ALPHA)
                                                                                4 557
      AACT=SQRT(GAMACT#ZA#RU#TA/W)
                                                                                A 554
      HACT=AACT*#2/(GAMACT-L.)
                                                                                  565
      HERO=HA-HACT
                                                                                A 556
       IF (HERO.GT.O.) GO TO 68
      PRINT 191
                                                                                A 558
       psr=0.1
                                                                                  550
                                                                                ٨
       GO TO 74
                                                                                A 560
       GO TO (69.711. LF
68
                                                                                  561
       ロちにまけち
69
                                                                                A 562
       A5F=AACT+((GAMACT-1.)/2.)*(UA-U5F)
       IF (A5F+GT+0+) GO TO 70
                                                                                A 563
                                                                                  564
                                                                                ٨
       PRINT 192
                                                                                  545
                                                                                ٨
       P5F=0.1
                                                                                  566
       GO TO 74
       PSF=PAR((ASF/AACT)RR(2.4GAMACT/(GAMACT-1.)))
                                                                                  567
70
                                                                                A 568
       GO TO 72
                                                                                A 540
       PSF-P5
71
                                                                                A 570
       ASF=AACT*(PSF/PA)**((GAMACT-1:1/(2:*GAMACT))
       USF=2.* (AACT-ASF)/(GAMACT-1.)+UA
                                                                                A 571
```

```
72
       MECHINE /ACC
                                                                               A 570
       TSESTA# (ASE/AACT)##2
                                                                                 573
                                                                               Δ
       RHOSE=P5E*W/(RU*ZA*TSE)
                                                                               ٨
                                                                                 574
       SSDE = SAD
                                                                               A 575
       HSE=HACT# (TSE/TA)
                                                                               A 574
       ZSSF=ZSA
                                                                               A =>>
       Z5E±ZA
                                                                                578
       GAMSF=GAMACT
                                                                               A 579
       DESERO.O
                                                                               A SAO
       CALL VISC (TSF.PSF.VISSE)
                                                                               A 581
       IF (VIS5F.FQ.1.0) 60 TO 73
                                                                                 500
      RESE=RHOSE*USE/VISSE
                                                                               ۸
                                                                                 583
73
       CONTINUE
                                                                               A 584
       T15F=XAS#((1.0/(U5F-A5F))-().0/U5F))
                                                                                 585
                                                                               ۵
       PRINT 193
                                                                               ٨
                                                                                 586
       PRINT 167
                                                                               A =87
       PRINT 168. PSE.RHOSE.TSE.HSE.SSRE.ZSE.GAMSE.ASE.USE.MSE.DESE
                                                                               A ≒88
^
                                                                               4 500
C
       SHOCK CROSSING - FROZEN EXPANSION - FQUILIBRIUM POST SHOCK
                                                                               1 500
c
                                                                                 501
                                                                               ٨
      HSESC=HSE+HERO
                                                                                 592
      CALL SNS (R5SF.U5SF.P5SF.H5SF.S5SRF.T5SF.A5SF.Z5SF.G5SF.Z5SF.M5SF
                                                                               4 503
      1.RHOSE.USE.PSE.HSESC.HTSE.PTSE.RTSE.STSRE.TTSE.ATSE.7TSE.CTSE.75TS
                                                                               A 504
     2F 1
                                                                               A 505
      RATEF=R5SE/RH05E
                                                                               A 596
      PRINT 203
                                                                               A 507
      PRINT 194
                                                                               Δ
                                                                                 508
      PRINT 205
                                                                                 500
      PRINT 206. PSSF.RSSF.TSSF.HSSF.SSSRF.ZSSF.GSSF.ASSF.USSF.MSSF.RATE
                                                                               Δ
                                                                                 600
     1 F
                                                                                 601
      PRINT 207
                                                                               Δ
                                                                                 602
      PRINT 194
                                                                               ٨
                                                                                 603
      PRINT 208
                                                                               Δ
                                                                                 504
      QTZQF=3.8798E-4*SQRT(PTSF/RNR)*(HTSF-HW)
                                                                               ٨
                                                                                 605
      PRINT 212. PISE.RISE.TISE.HISE.ZISE.GISE.ATSE.QIZOE.ANR.TISE
                                                                               A 506
      PRINT 203
                                                                               A 507
      PRINT 195
                                                                               4 608
      PRINT 205
                                                                               4 609
      P5SFF=P5F*(2**GAMACT*M5F**2-GAMACT+1*)/(GAMACT+1*)
                                                                               A 610
      R5SFF=(RH05F*(GAMACT+1.)*M5F**2)/((GAMACT-1.)*M5F**2+2.)
      TSSFF=P5SFF+W/(R5SFF+RU+ZA)
                                                                               A 612
      H5SFF=H5F*T5SFF/T5F
                                                                               A 613
      Z5SFF=ZA
                                                                                614
      GESEFEGAMACT
                                                                                615
      A5SFF=A5F*SQRT(TSSFF/TSF)
                                                                               4 515
      USSEF=RHOSE#USE/RSSEE
                                                                                617
      MSSEF=USSEF/ASSEF
                                                                               A 619
      SSSREF=(ALOG(PSSEE/PSE)-GAMACT*ALOG(RESSEE/DHOSE))/(GAMACT-1.)+SSRE
                                                                               1 410
      RATEF=R5SEE/RH05E
                                                                               A 620
      PRINT 206. PSSFF.RSSFF.TSSFF.HSSFF.SSSRFF.ZSSFF.GSSFF.ABSFF.USSFF.
                                                                               A 621
     IMSSFF . RATEF
                                                                               A 622
      PRINT 207
                                                                               A 627
      PRINT 195
                                                                               A 624
      PRINT 208
                                                                               A 625
      HTSFF=H5F++5*U5F**>
                                                                               A 626
      TTSFF=T5SFF*HT5FF/H5SFF
                                                                               A 627
      PTSFF=P5SFF*(HTSFF/HSSFF)**(GAMACT/(GAMACT-1.))
                                                                               A 628
      RISEF=PISEF#W/(TISEF#ZA#RU)
                                                                               A 620
      ZISEFEZA
                                                                                630
      GTSEE=GAMACT
                                                                                631
      ATSFF=ASSFF*SQRT(TTSFF/TSSFF)
                                                                               A 672
      QTZOFF=3+8798E-4*SORT(PT5FF/BNR)*(HT5FF-HW)
                                                                               A 633
      PRINT 212. PTSFF.RTSFF.TTSFF.HTSFF.ZTSFF.GTSFF.ATSFF.QTZOFF.RNP.TI
                                                                              4 634
                                                                              A 635
                                                                               A 636
\mathbf{c}
      EQUILIBRIUM EXPANSION-EXPANSION TURE
                                                                               A 637
```

C ,		A 638
74	IF (LF.EG.2) GO TO 93	ል ዲፈው
C		ጸ ዳልጣ
C	LF=1 CASE	A 641
C		A 642
	IF (IEQ=FQ-2-AND-IFXP=FQ-1) GO TO 87	A 643
	ĎELU=US~UA	A 644
	GO TO (75,82). IEXP	A 545
75	HMIN=1 a DE+5	A 646
76	PELH=(HUP-HMIN)/(FLOAT(JAC)-1.00)	A 647
	PRINT 196	A 64A
	IMET(1)=1MET(2)=0	A 649
	LCONF=1	A 650
	00 80 J=1 JAC	A 651
	Z(4)=(HUP-FLOAT(J-1)*DFLH)/287.0245	A 652
	7(4)=ALOG10(7(4))	A KG7
	CALL, SLOW (SAR, Z, 4, 6, 1T, NV, NFRR, Y, X)	A 654
	GO TO (79.77). LCODE	Δ 656 Δ 656
77	L=J	A 657
	DO 78 K=L+JAC	A 658
	TARHR(K)=HUP-FLOAT(K-1)*DFLH	A 659
78	TABA(K)=1.5766/SQRT(TABHR(K))	ል ለ ለበ
70	CONTINUE PRENT 197	A 661
	• • •	ለ 562
79	GO TO 81 TARHR(J)=(10°**Z(4))*287°0242	A 663
74		A 664
80	TARA(J)=1。/(Z(6)#3。314)935+2) CONTINUE	A 665
81	CALL SIMR (TABHR, TARA, JAC, JAC, TABANS)	A 666
71	IF (LF.FQ.2) GO TO 99	A 667
	GO TO 86	A 668
82	IF (P5F.oF.oO.1) GO TO 83	A 669
OE	P5F=0.1	A 670
82	DELPG=ALOG10(PAZPSE)Z(FLOAT(4AC)-1.0)	A 671
84	P56(1)=ALOG10(PA)	A 572
.,-	PRINT 198	A 673
	P5K (1) = PA	1 674
	TARHR(1)=HA	A 675
	TARA(1)=1.0/AA	A 676
	TARP(1)=PA	8 677
	DO 85 J=2.1AC	A 678
	P56(J)=P56(J-1)-DFLP6	A 679
	P5K (J)=10=#*P5G(J)	A 680
	CALL SAVE (PSK(J) ORKOHKOSAROTKOAKOZKOGKOI)	A SBI
	TARHR(J)=HK	A 682
	TABA(J)=1./AK	A SR3
	TARP(J)=P5K(J)	A 684
85	CONTINUE	A 685
	CALL SIMR (TABHROTABAOIACOIACOTABANS)	<u>ል 686</u>
86	IF (LF.EO.1) GO TO 87	4 687
	US=UA+TARANS(IAC)	A FRE
	GD TO 103	A 689
87	CALL FILUP (DELU.H5.2.NON.TABANS.TABHR)	A 690
	IMOD=1	A 691
	GO TO (89.88). IFXP	A 692
88	CALL FILUP (DELU.P5.2.NON.TABANS.TABP)	A 693
	GO TO 100	A 694
89	IF (H5.GF.5.E+4) GO TO 90	A 695
	PRINT 199	A 696
	GO TO 180	A 697
90	XX=9AR	A GOR
	Z(4)=ALOG10(H5/287 ₀ 0245)	A AGG
	IMET(1)=IMET(2)=0	A 700
	LCODE=1	A 701
	CALL SLOW (XX.Z.4.1.1T.NV.NERR.Y.X)	A 702
	GO TO (91.92). LCODE	A 763

```
91
      CALL SLOW (XX+7+4+2+IT+NV+NFRR+Y+X)
                                                                               A 704
      CALL SLOW (XX,Z,4,3,1T,NV,NFRR,Y,X)
                                                                               A 705
      CALL SLOW (XX,Z,4,5,IT,NY,NERR,Y,X)
                                                                               A 706
      CALL SLOW (XX+Z+4+6+IT+NV+NFRR+Y+X)
                                                                                 707
                                                                               ٨
      CALL SLOW (XX+Z+4+7+IT+NV+NERR+Y+X)
                                                                               A 708
      T5=7(1)
                                                                               A 700
      RE=(10.##Z(2))#1.2014880
                                                                               A 710
      P5=(10***Z(3))*I*013246E+5
                                                                               A 711
      GAMS=Z(5)
                                                                               A 712
      A5=7(6)*331-4193
                                                                               A 713
      275=7(7)
                                                                               A 714
      GO TO 103
                                                                               A 715
92
      PRINT 200
                                                                               A 716
      PRINT 201
                                                                               A 717
      P5=1 + 01325E+5* (H5/2+99657F+5)**3+5*FXP(23+019-5AR)
                                                                               A 718
      T5=H5/998 857
                                                                               Α
                                                                                 719
      R5=3+48398E-3*P5/T5
                                                                                 720
                                                                               А
      A5=20.046*SORT(T5)
                                                                                 721
                                                                               Δ
      725=2ST5=1.0
                                                                               A 722
      GAM5=1.4
                                                                               A 723
      GO TO 103
                                                                               A 724
                                                                               A 725
C
      LE=2 CASE
                                                                               A 726
                                                                               ٨
                                                                                 727
C) Z
      GO TO (95,94). ISAV
                                                                               A 728
94
      CALL SAVE (P5.R5.H5.SAR.T5.A5.Z75.GAM5.1)
                                                                               A 729
      IF (IEXP.FQ.1) GO TO 98
                                                                               A 730
      DELPG=ALOGIO(PAZPS)Z(ELOAT(IAC)-1.1
                                                                               A 771
      60 TO 84
                                                                               A 732
95
      Z(3)=ALOG10(P5/1.013246F+5)
                                                                                 723
                                                                               ٨
      IMET(1) = IMET(2) = 0
                                                                                 734
                                                                               Δ
      LCODE=1
                                                                               A 725
      CALL SLOW (SAR.Z.3.1.IT.NV.NERR.Y.X)
                                                                               A 736
      GO TO (96,97), LCODE
                                                                                 737
                                                                               Δ
96
      CALL SLOW (SAR, Z, 3, 2, IT, NV, NERR, Y, X)
                                                                               A 738
      CALL SLOW (SAR.Z.3.4.1T.NV.NERR.Y.X)
                                                                               A 739
      CALL SLOW (SAR.Z.3.5.IT.NV.NERR.Y.X)
                                                                               A 740
      CALL SLOW (SAR.Z.3.6.1T.NV.NERR.Y.X)
                                                                               A 741
      CALL SLOW (SAR+Z+3+7+IT+NV+MERR+Y+X)
                                                                               A 742
      T5=Z(1)
                                                                               Δ
                                                                                 743
      R5=(10.0**Z(2))*1.2914889
                                                                               Λ
                                                                                 744
      H5=(10+0**Z(4))*287-0245
                                                                               A 745
      GAM5=Z(5)
                                                                                 746
                                                                               ٨
      A5=7(6)*331.4193
                                                                               A 747
      ZZS=Z(7)
                                                                               A 74P
      GO TO 98
                                                                               A 749
97
      PRINT 200
                                                                               A 750
      PRINT 201
                                                                               A 751
      H5=2.99657E+5#((P5/1.01325E+5)/(FXP(23.919-SAR)))**0.2857
                                                                               A 752
      T5=H5/998 - 857
                                                                               A 753
      R5=3+48398E-3*P5ZT5
                                                                               A 754
      A5=20=046#SQRT(T5)
                                                                               4 755
      ZZ5=ZST5=1+0
                                                                               A 755
      GAM5=1.4
                                                                               A 757
98
      HMIN=H5
                                                                               A 758
      GO TO 76
                                                                                 750
                                                                               ٨
99
      US=UA+TABANS (JAC)
                                                                               ٨
                                                                                 760
      GO TO 103
                                                                               A 751
100
      GO TO (101.102), ISAV
                                                                               A 762
101
      CALL SEARCH (P5.R5.H5.SAR.T5.A5.ZZ5.GAM5.ZST5.ISP)
                                                                               A 763
      GO TO 103
                                                                               A 764
102
      CALL SAVE (P5.R5.H5.SAR.T5.A5.ZZ5.GAM5.1)
                                                                               A 765
      ZST5=ZZ5
                                                                               A 766
103
      M5=U5/A5
                                                                               4 747
      RE5=0.0
                                                                               A TAR
      CALL VISC (T5.P5.VIS5)
                                                                               A 769
```

```
4 770
      IF (VIS5.FO.1.0) GO TO 104
                                                                                 771
                                                                              ٨
      RES=RS#U5/VISS
                                                                                 772
104
      CONTINUE
                                                                              Δ 773
      T[5=XAS*((1.0/(U5-A5))-(1.0/U5))
                                                                              A 774
      PRINT 202
                                                                              A 775
      PRINT 167
                                                                               ٨
      PRINT 168. P5.R5.T5.H5.SAR.ZZ5.GAM5.A5.U5.M5.RE5
                                                                               Δ 777
      CALL SNS (RH055.055.P55.H55.S5SR.T55.A55.Z55.GAME55.ZSTAR55.M55.R5
                                                                               ٨
                                                                                 770
     1.US.P5.H5.HT5.PT5.RT5.ST5R.TT5.AT5.ZT5.GAMFT5.ZSTART5)
                                                                               A
      RATEF=RHO5S/R5
                                                                                 780
      DOINT 202
                                                                               A 701
      PRINT 204
                                                                               A 702
      PRINT 205
                                                                                 703
      PRINT 206. P55. RHOSS. T55. H55. S55R. 755. GAMESS. ASS. USS. MES. PATER
                                                                               ٨
                                                                                 794
      PRINT 207
                                                                                 705
                                                                               ٨
      PRINT 204
                                                                               A 786
      PRINT 208
                                                                               A 787
_
                                                                               A 700
      HEAT TRANSFER RELATION OF NASA TH D-4799
c
                                                                               A 780
•
                                                                               Λ
                                                                                 790
      QTZ0=3.8798F-4#SQRT(PT5/BNR)#(HT5-HW)
                                                                               A 791
      PRINT 209, PT5, RT5, TT5, HT5, ZT5, GAMET5, AT5, QTZ0, BNR, TI5
                                                                                 702
      IF (IMODaFOa2) GO TO 105
                                                                               A 703
      TE (DELUS.EQ.0.0) GO TO 106
                                                                               A 704
      IMOD=2
                                                                               A 705
      PRINT 147
                                                                               A 706
      PRINT 145
                                                                               A 797
      PRINT 146
                                                                                 700
                                                                               ٨
      US=US-2。0×DFLUS
                                                                                 700
                                                                               Δ
      GO TO 103
                                                                               A 800
      U5=U5+2.0*DELU5
105
                                                                               A BOL
c
                                                                               A 842
      COMPUTING ACCELERATION GAS (AIR) CONDITIONS
C
                                                                               A 803
c
                                                                               4 804
106
      US0=1:1#U5
                                                                               A 805
      H20=1004.598*T1+0.5*US0**2-0.5*(US0-U5)**2
107
                                                                               4 B06
      CALL SAVE (P5.RHO20.H20.SR20.T20.A20.Z20.GAM20.3)
                                                                               A 807
      P10=(P5+RH020*(US0-UF)**2)/(1.+(.003484*US0**2)/T1)
      USONEW=U5/(1.-(.0003484*P10)/(T1*RH020))
                                                                               A AAR
                                                                               A 809
      IF (ABS(1.-USONEW/USO).LF..0010) GO TO IOB
                                                                               A 810
      US0=USONEW
                                                                               A 811
      GO TO 107
                                                                                A 812
      M20=U5/A20
108
                                                                               A RIT
      MSID=USO/A1
                                                                               A 814
      RHO10=(P10#W)/(RU#T1)
                                                                               A AIS
      R20R=RH020/RH010
                                                                               A BIS
      PRINT 210
                                                                                A ATT
      PRINT 211
      PRINT 212. P5.RHO20.T20.H20.720.M20.P10.U50.M510.P20R
                                                                               A BIR
                                                                                A 810
      PRINT 213
                                                                               A 820
      PRINT 214
                                                                                A 821
                                                                                A 822
       ACCELERATION TEST TIME- MIRELS THEORY (LAMINAR)
c
                                                                                A 823
                                                                                A 824
       XA (1 )= . 1 * XAS
       IF (MS10.GF.4.0.AND.MS10.LF.14.) GO TO 109
                                                                                A 825
       IF (MS10.GT.14.) GO TO 110
                                                                                A 826
                                                                                A 827
       PRINT 215
                                                                                4 B28
       GO TO 118
       XXMAX=P10*DTA**2*(2.06-.2056*MS10+8.0955-3*MS10**2)
                                                                                A 820
 109
                                                                                A 830
       GO TO 111
                                                                                A 831
       XXMAX=P10#DIA*#2#(.8723-7.488F-3*M510)
110
                                                                                A 832
 C
       XAS IS DIVIDED INTO 10 INTERVALS XA
                                                                                A 433
 c
                                                                                A 834
 Ċ
                                                                                A 835
       no 117 J=1-10
 111
                                                                                A 836
       BFTA1=XA(1)#RHO10/(2.#XXMAX#RHO20)
```

```
BETA2=2.*PH020/PH010
                                                                                 A 837
      AXUP= 99999
                                                                                 A 838
      AXI DW= . 00001
                                                                                 A 830
      DELTAX= (AXUP-AXLOW) /100.
                                                                                 A 840
      E1=+1F-6
                                                                                 A 841
      AX= . 5
                                                                                 A 842
      CALL ITRE (AX.AXLOW.AXUP.DELTAX.EDEAX.E1.E1.200.100DE)
                                                                                 A BAT
      IF (ICODE) 113,112,113
                                                                                 A 844
112
      RXI = AX * * 2
                                                                                 A Pas
      XL =RXL *XXMAX
                                                                                 A BAK
      TAUI=RH010*XA(1)/(RH020*US)
                                                                                 A 847
      AVI ID = . 00000
                                                                                 A BAR
      PXI 0W= . 00001
                                                                                   RAO
      DELTBX=(BXUP-BXLOW)/100.
                                                                                 A 850
      8X=-5
                                                                                 A REI
      CALL ITR2 (BX.BXLOW.BXUP.DELTBX.FDEBX.E1.E1.200.TCODE)
                                                                                 A DES
      IF (ICODE) 113-116-113
                                                                                 A RES
      GO TO (114+115+115+115), [CODE
113
                                                                                 A REA
      PRINT 154
114
                                                                                 5 OFF
      50 TO 118
                                                                                 A 856
115
      PRINT 155, ICODE
                                                                                   RS7
                                                                                 ٨
      GO TO 118
                                                                                 A ACA
116
      TAU=BX**2*XXMAX/USO
                                                                                 A 850
      UT=XLZTAU
                                                                                 A 860
      URAT=U1/U5
                                                                                 4 861
      URA=USPZUT
                                                                                 6 842
      PRINT 216. XAS.XA(I).XXMAX.XL.RXL.TAU.UI.QQAT.URA.TAUI
                                                                                 A 863
      XA(1+1)=XA(1)+.1*XAS
                                                                                 A 864
117
      CONTINUE
                                                                                 A RAS
         (ISTET.FQ.2) GO TO 122
118
                                                                                 A PAA
      IF (LF.EQ.2) GO TO 121
119
                                                                                 A 867
      NN=NN+1
                                                                                 A RAR
      IF (IREP.EG.1.OR.NVEL.EG.NN) GO TO 120
                                                                                 A 860
      IF (NN+GT+10) GO TO 120
                                                                                 A 870
      U5=U5+U5T
                                                                                 A 871
      DELU=U5-UA
                                                                                 A 872
      1E0=2
                                                                                 A 877
      GO TO 67
                                                                                 4 874
120
      IF (LD.NF.4) GO TO 1
                                                                                 A 875
      IF (IRFP.FQ.1) GO TO 250
      U5=U5-(FLOAT(NVEL)-1.)*U5!
                                                                                 A 876
250
      NN=0
                                                                                 A 877
      IMFT(1) = IMET(2) = 0
                                                                                 A 878
      LCODE=1
                                                                                 4 R79
      IF (NMN.EQ.1) GO TO 56
                                                                                 4 880
      IF (NMN+EQ+2) GO TO 60
                                                                                 A ARI
      GO TO 1
                                                                                A ARP
121
      IF (LD+NE+4) GO TO 1
                                                                                A BRT
      IFO±2
                                                                                  884
      IMFT(1)=IMFT(2)=0
                                                                                  AAE
      LCODE=1
                                                                                 A 886
      IF (NMN.FQ.1) GO TO 56
                                                                                A 887
      IF (NMN+EQ+2) GO TO 60
                                                                                 A AAA
      GO TO 1
                                                                                 A 889
C
                                                                                A 890
C
      EXPANSION TUNNEL - EQUILIBRIUM EXPANSION
                                                                                A 891
c
                                                                                A 802
      PRINT 147
122
                                                                                7 893
      PRINT 217
                                                                                A 894
      PRINT 146
                                                                                A 895
      PRINT 218
                                                                                A AOA
      PRINT 219
                                                                                A 907
      IF(LG.FQ.1) P6=0.0
      IF(LG.FQ.2) U6=0.0
      PRINT 220. U6.P6.DIAT.DIAN.ISAV
                                                                                A AOA
                                                                                 A ROO
```

```
4 900
c
            FROZEN FLOW- EXPANSION TUNNEL
                                                                                                                                                             A 901
C
123
                                                                                                                                                             A 902
            ALPS=275-1 a
                                                                                                                                                                 903
                                                                                                                                                             Δ
            GACT5=(7.+3.*ALP5)/(5.+ALP5)
                                                                                                                                                                 904
            AACTS=SQRT(GACT5#ZZ5#RU#T5/W)
                                                                                                                                                             A 905
            HACTS=AACTS##2/(GACTS-1.)
                                                                                                                                                             4 906
            HFROS=H5-HACTS
                                                                                                                                                             8 947
            IF (HEROS.GT.O.O.) GO TO 124
                                                                                                                                                              4 948
            PRINT 221
            GO TO (130.140). LG
                                                                                                                                                             A 909
                                                                                                                                                              A 910
124
             GO TO (125+127)+ LG
                                                                                                                                                              A 911
125
            U6F=U6
                                                                                                                                                              A 912
             CATA=(GACTS-1.0) # (US##2-U6##2)+AACTS##2
             IF (CATA.GT.0.0) GO TO 126
                                                                                                                                                              A 913
                                                                                                                                                              A 914
             PRINT 222
                                                                                                                                                              A 915
             CO TO 130
                                                                                                                                                              A 916
             A6F=SQRT(CATA)
126
                                                                                                                                                              A 917
             P6F=P5#((A6F/AACT5)##(2a#GACT5/(GACT5-1a0)))
                                                                                                                                                              A 918
             GO TO 128
                                                                                                                                                              A 919
127
             P6F=P6
                                                                                                                                                              A 020
             A6F=BACT50(P6F/P5)##((GACT5-1.)/(2.#GACT5))
             USF=SQRT(US##2+(AACTS##P-ASF##2)/(GACTS-1.0))
                                                                                                                                                              A 921
                                                                                                                                                              A 922
128
             MAR=UAF/AAF
             T6F=T5#(A6F/AACT5)##2
                                                                                                                                                              A 923
                                                                                                                                                              A 924
             RHO6F=P6F#W/(RU#ZZ5#T6F)
                                                                                                                                                              A 925
             H6F=HACT5#(T6F/T5)
             Z6F=7Z5
                                                                                                                                                              A 926
                                                                                                                                                              A 927
             GAMSF=GACT5
                                                                                                                                                              A 928
             SARF=SAR
                                                                                                                                                              A 929
             RESE = 0.0
                                                                                                                                                              4 930
             CALL VISC (T6F.P6F.V1S6F)
                                                                                                                                                              A 021
             IF (VIS6F.FO.1.0) GO TO 129
                                                                                                                                                              A 932
             RESERRIOSE PUSE / VISSE
                                                                                                                                                              V 033
 129
             PRINT 223
                                                                                                                                                              A 974
             PRINT 167
                                                                                                                                                              A 035
             PRINT 168, PGF . RHOSE . TGF . HGF . SAR . ZGF . GAMGE . AGE . UGF . MGF . PEGF
                                                                                                                                                              A 936
             H6FSC=H6F+HFROS
             CALL SNS (R6SF. U6SF. P6SF. H6SF. S6SRF. T6SF. A6SF. Z6SF. G6SF. Z56SF. M6SF
                                                                                                                                                              A 937
           1.RHO6F.V6F.P6F.H6FSC.H16F.P16F.R16F.S16RF.T16F.ATAF.Z16F.G16F.ZS16
                                                                                                                                                              8 918
                                                                                                                                                              V .030
           2F 1
                                                                                                                                                              A 940
             RATE6=R6SF/RH06F
                                                                                                                                                                  941
             PRINT 224
                                                                                                                                                              A 942
             PRINT 194
             PRINT 205
                                                                                                                                                              A 947
             PRINT 206, PESE, RESE, TESE, HESE, SESRE, ZESE, GESE, AESE, LIESE, MESE, RATE
                                                                                                                                                              A 944
                                                                                                                                                              A 945
                                                                                                                                                              A PAR
             PRINT 225
                                                                                                                                                              A 947
             PRINT 194
                                                                                                                                                              A 94R
             PRINT 208
             QTE6=3.8798E-4#SORT(PT6F/BNR)#(HT6F-HW)
                                                                                                                                                              4 949
                                                                                                                                                              A 950
             PRINT 212, PT6F .RT6F .TT6F .HT6F .ZT6F .GT6F .AT6F .QTF6 .BNP .T16F
                                                                                                                                                              A 951
                                                                                                                                                              6 952
             PRINT 224
                                                                                                                                                              A 047
             PRINT 195
                                                                                                                                                              A 954
             PASFF=PAF#(2.*GACTS#MAF##2-GACTS+1.)/(GACTS+1.)
                                                                                                                                                              1 955
             R6SFF=(RHO6F*(GACTF+1.)*M6F**2)/((GACTF-1.)*M6F**2+2.)
                                                                                                                                                               A OKA
             T6SFF=P6SFF*W/(R6SFF*PU*775)
                                                                                                                                                              A 957
                                                                                                                                                              4 95R
             H6SFF=H6F#T6SFF/T6F
                                                                                                                                                                  950
                                                                                                                                                              Δ
             765FF=225
                                                                                                                                                               A OKA
             GASEF=GACT5
                                                                                                                                                              A 961
             A6SFF=A6F#SQRT(T6SFF/T6F)
             U6SFF=RH06F#U6F/R6SFF
                                                                                                                                                              A 962
                                                                                                                                                               A 967
             M6SFF=U6SFF/A6SFF
             SASREF=(ALOG(PASEF/PAE)-GACTS#ALOG(RASEF/RHOAF))/(GACTS-1.)+96RF
                                                                                                                                                              A 964
             RATEF6=R6SFF/RH06F
                                                                                                                                                              A 965
             PRINT 206 PASSE RASSE TASSE HASSE SASSE TO THE TOTAL PRINT 206 PASSE PASSE TO THE PRINT 206 PASSE PASS
                                                                                                                                                               A 966
```

```
1M6SEE+RATEE6
                                                                              A 967
      PRINT 225
                                                                              A 968
      PRINT 195
                                                                              A 969
      PRINT 208
                                                                              4 970
      HT6FF=H6F++5*U6F**2
                                                                              A 971
      TT6FF=T6SFF*HT6FF/H6SFF
                                                                              4 972
      PT6FF=P6SFF*(HT6FF/H6SFF)**(GACT5/(GACT5-1.))
                                                                              A 973
      RT6FF=PT6FF*W/(TT6FF*ZZ5*RU)
                                                                              A 974
      クエムロロニクスら
                                                                              4 975
     GTAFF=GACT5
                                                                              A 976
      AT6FF=A6SFF#SQRT(TT6FF/T6SFF)
                                                                              A 077
      QTEE6=3+8798E-4*SQRT(PT6EE/BNR)*(HT6EE-HW)
                                                                              4 978
      PRINT 212. PT6FF.RT6FF.TT6FF.HT6FF.ZT6FF.GT6FF.AT6FF.OTFFA.PNR.TI6
                                                                              4 970
     1 F
                                                                                980
      GO TO (130+140)+ LG
                                                                              A GRI
C
                                                                              A 982
C
      LG=1 DENOTES U6 IS INPUT
                                                                              A 983
C
                                                                              A 984
130
      H6=H5++5*(U5**2-U6**2)
                                                                              A 985
      IF (H6.GF.2.E+4) GO TO 131
                                                                              A 986
      PRINT 226
                                                                              A 987
      GO TO 1
                                                                              A GRA
171
      Z(4)=ALOG10(H6/287.0245)
                                                                              A OAO
      IMET(1)=IMET(2)=0
                                                                              A 900
      LCODF=1
                                                                              A 991
      CALL SLOW (SAR.Z.4.3.TT.NV.NFRR.Y.X)
                                                                              V 005
      GO TO (132+135)+ LCODE
                                                                              V 903
      P6=(10.0**Z(3))*1.01325E+5
132
                                                                              A 994
      GO TO (133+134)+ ISAV
                                                                              A 995
133
      CALL SLOW (SAR.Z.4.1.1T.NV.NFRR.Y.X)
                                                                              A 996
      CALL SLOW (SAR+Z+4+2+IT+NV+NERR+Y+X)
                                                                              A 907
      CALL SLOW (SAR.Z.4.5.IT.NV.NERR.Y.X)
                                                                              A 998
      CALL SLOW (SAR.Z.4.6.IT.NV.NERR.Y.X)
                                                                              A 909
      CALL SLOW (SAR.Z.4.7.IT.NV.NERR.Y.X)
                                                                              41000
      T6=7(1)
                                                                              81001
      R6=(10***Z(2))*1.29]4889
                                                                              11002
      GAM6=Z(5)
                                                                              41003
      A6=Z(6)*331.4193
                                                                              41004
      ZZ6=Z(7)
                                                                              A1005
      PRINT 227
                                                                              A1006
      GO TO 137
                                                                              41007
134
      CALL SAVE (P6:R6:H6:SAR:T6:A6:Z76:GAM6:1)
                                                                              41008
      PRINT 228
                                                                              A1009
      IF (LG+EQ+1) 60 TO 137
                                                                              AIOTO
      U6=50RT(2+*(H5-H6)+U5**2)
                                                                              ATOIT
      GO TO 137
                                                                              A1012
135
      P6=1.01325F+5*(H6/2.99657F+5)**3.5*FXP(23.919~SAP)
                                                                              AINIR
136
      T6=H5/998.857
                                                                              ATOTA
      R6=3+48398E-3*P6/T6
                                                                              A1015
      A6=20.046#SORT(T6)
                                                                              ATOTA
      GAMA=1.4
                                                                              41017
      ZZ6=7ST6=1.0
                                                                              AIDIR
      PRINT 229
                                                                              A1019
137
      M6=U6/A6
                                                                              41020
      RE6≖0.0
                                                                              41021
      CALL VISC (T6.P6.VIS6)
                                                                              A1022
      IF (VIS6.EQ.1.0) GO TO 138
                                                                              41023
      RE6=R6*U6/V1S6
                                                                              A1024
138
      PRINT 230
                                                                              A1025
      PRINT 167
                                                                              11026
      PRINT 168. P6.R6.T6.H6.SAR.Z76.GAM6.A6.U6.M6.RF6
                                                                              41027
      CALL SNS (RH065+U65+P65+H65+S6SR+T65+A65+Z65+GAMEAS+Z6TAPAS+M65+P6 41028
     1.U6.P6.H6.HT6.PT6.RT6.ST6R.TT6.AT6.ZT6.GAMET6.ZSTART6)
                                                                              A1029
      RATGE=RHOGS/R6
                                                                              41030
      QT6=3+8798E-4*SQRT(PT6/BNR)*(HT6-HW)
                                                                              <u> 11031</u>
      AA6=(R5*U5)/(R6*U6)
                                                                              41032
```

```
AIAZZ
     DELT6=0.5*(DIAN-DIAT#SQRT(AA6))
                                                                         A1074
     PRINT 231
                                                                         ATARE
     PRINT 204
                                                                         AIDRE
     PRINT 205
     PRINT 206: P65: RHO65: T65: H65: S6SR: 765: GAMERS: A65: U65: MAC: DATAE
                                                                         81037
                                                                         A1038
     PRINT 232
                                                                         A1039
     PRINT 204
                                                                         ALOAO
     PRINT 233
     PRINT 206. PT6.RT6.TT6.HT6.ZT6.GAMFT6.AT6.QT6.BNP.AA6.DFLT6
                                                                         A1041
                                                                         A1042
     IF (LG.EQ.2.OR.LREP.FQ.1) GO TO 119
                                                                         A1043
     NNN=NNN+1
                                                                         A1044
     IF (NUMU6.EQ.NNN) GO TO 139
                                                                         41045
     IF (NNN.GT.10) GO TO 119
                                                                         81045
     U6=U6+U61
                                                                         41047
     GO TO 123
                                                                         A1048
     U6=U6-(FLOAT (NUMU6)-1:)*U6I
139
                                                                         A1049
     0 = NNN
                                                                         41050
     GO TO 119
                                                                         81051
C
                                                                         A1052
     LG=2 DENOTES P6 IS INPUT
C
                                                                         A1053
C.
                                                                         41054
     IMFT(1) = IMFT(2) = 0
140
                                                                         41055
     LCODE=1
                                                                         41055
     Z(3)=ALOG10(P6/1.013246F+5)
                                                                         A1057
      CALL SLOW (SAR.Z.3.1.IT.NV.NERR.Y.X)
                                                                         AINER
     GO TO (141.143). LCODE
                                                                         41059
      GO TO (142+134) + 154V
141
                                                                         ALGGO
      CALL SLOW (SAR.Z.3.2.T.NV.NERR.Y.X)
142
                                                                          ALOST
      CALL SLOW (SAR.Z.3.4.IT.NV.NERR.Y.X)
                                                                         11062
      CALL SLOW (SAR.Z.3.5.II.NV.NERR.Y.X)
                                                                          A1063
      CALL SLOW (SAR.Z.3.6.IT.NV.NERR.Y.X)
                                                                          A1064
      CALL SLOW (SAR.Z.3.7.IT.NV.NFRR.Y.X)
                                                                         41065
      T6=7(1)
                                                                          ATOKK
      R6=(10, ##Z(2))#1,2914889
                                                                          41067
      H6=(10°**Z(4))*287°0245
                                                                          ALDER
      GAM6=7(5)
                                                                          41069
      A6=Z(6)#331.4193
                                                                          Δ1070
      ZZA=Z(7)
                                                                          AICTI
      PRINT 227
                                                                          81072
      U6=50RT(2.#(H5-H6)+U5##2)
                                                                          61073
      GO TO 137
      H6=2.99657F+5#((P6/1.01325F+5)/(FXP(23.919-5AR)))##0.2857
                                                                          A1074
143
                                                                          A1075
      U6=SORT(20*(H5-H6)+U5##2)
                                                                          41076
      GO TO 136
                                                                          81077
      STOP
144
                                                                          A1078
^
                                                                          A1079
c
                                                                          ATORO
\overline{\phantom{a}}
      FORMAT (/51H FOLLOWING EQUILIBRIUM CONDITIONS INCLUDE FLOW ATTM)
                                                                          ALOBE
145
      41082
146
                                                                          ALARS
     1 X 1
      AINRA
147
                                                                          ALCRS
     1 X X )
      FORMAT (//46H EXPANSION TUBE PROGRAM OF MILLER FOR REAL AIR)
                                                                          A1086
148
      FORMAT (51H ALE PHYSICAL QUANTITIES IN MKS UNITS- NASA SP-7012)
                                                                          ATORT
149
                                                                          ALORR
      FORMAT (//28H SHOCK TUBE PHASE OF PROGRAM)
150
      FORMAT (//37H MEASURED INPUTS FOR SHOCK TURE PHASE)
                                                                          PROTA
151
                                                                          A1090
                                                              2
                                          T1
                                                    USI
      FORMAT (/105H RUN
                              ₽1
152
                                                                          11001
                                             ISAV
                                                   INU LD3
                                      DIA
                   Τ4
                            XIS
     1P4
                                                                          11092
      FORMAT (9E10+3+315)
153
                                                                         · AING3
      FORMAT (20H MAX COUNT EXCEEDED )
154
                                                                          41094
      FORMAT (17H DERIVATIVE = 0. .15)
155
      FORMAT (7H ICODE=+15.5H RI=+E12.3+7H DFLR=+F12.3)
                                                                          41005
156
                                                              нγ
                                                                          11006
                                       RHOR
                               ΤZ
      FORMAT (765H
157
                                                                          41097
               U31
     143
                                                                          ALAGR
      FORMAT (7F10+3)
158
```

```
160
       FORMAT (ZAGH
                        PΡ
                                 DUAD
                                             н2
                                                      112
                                                                 USIS
                                                                               41000
       FORMAT (5E10.3)
 160
                                                                               A1100
       FORMAT (7/30H IMPERFECT HYDROGEN DRIVER GAS)
 161
                                                                               ATIOI
       FORMAT (//28H IMPEREFCT HELIUM DRIVER GAS)
 162
                                                                               A1100
       FORMAT (//13H 4 CONDITIONS)
 163
                                                                               FOLLA
       FORMAT (/75H
 164
                                 RHO
                                                                 S /D
                                                                               41104
                 Δ
                            101 5
                                                                               A1105
 165
       FORMAT (BE10.3)
                                                                               41106
       FORMAT (7/44H CONDITIONS BEHIND INCIDENT SHOCK - REGION 2)
 166
                                                                               41107
167
       FORMAT (/106H
                                  PHO
                                                                  6 /0
                                                       ы
                                                                               41109
      17
                 CAME
                                                                               Attna
168
       FORMAT (11F10.3)
                                                                               Attio
       FORMAT (//44H RATIO- 2 TO 1 CONDITIONS AND SHOCK VELOCITY)
169
                                                                               A 1 1 + 1
170
       FORMAT (/66H
                                 DHO
                                            T
                                                                 ٨
                                                                               A1112
      151
                US 1.3
                                                                               A1113
171
       FORMAT (7F10.3)
                                                                               A1114
       FORMAT (//47H SHOCK TUBE FLOW PARAMETERS USING MIRELS THEORY)
172
                                                                               A1115
173
       FORMAT (/107H
                        LMAY
                                             L/LMAX
                                                                               ATTE
      11 MAYT
                  LT
                           LT/LMAXT TIME
                                                 LITT
                                                            TIMIT
                                                                               A1117
       FORMAT (745H SHOCK TUBE TEST TIME NOT COMPUTED - MS1 LT 4)
174
                                                                               ATTIR
175
       FORMAT (11F10.3)
                                                                               ATTIO
176
       FORMAT (//51H SHOCK TUBE LAMINAR FLOW NONUNIFORMITY NOT COMPUTED)
                                                                               A1120
       FORMAT (//45H SHOCK TUBE FLOW NONUNIFORMITIES-LAMINAR CASE)
177
                                                                               A1191
178
       FORMAT (/44H RATIOS-PARAMETER AT XS TO PARAMETER AT XS=0)
                                                                               A1122
       FORMAT (765H XS/L
179
                                 0
                                            PHO
                                                      т
                                                                               FSIIA
                 111
                                                                               41124
180
       FORMAT (7F10.3)
                                                                               A1125
      FORMAT (7/53H SHOCK TUBE TURBULENT FLOW NONUNIFORMITY NOT COMPUTED
181
                                                                               41126
      1.1
                                                                               A1127
192
      FORMAT (7/47H SHOCK TUBE FLOW NONUNIFORMITIES-TURRULENT CASE)
                                                                               41128
      FORMAT (7/52H CONDITIONS BEHIND STANDING SHOCK AT SECONDARY DIAPH)
183
                                                                               41120
      FORMAT (7/54H STAGNATION CONDITIONS BEHIND STANDING SHOCK-REGION T
184
                                                                               41130
                                                                               A1171
185
      FORMAT (/98H
                      D
                                                                 SZR
                                                                               41132
                   GAME
                              ۸
                                        ΩТ
                                                   ₽N s
                                                                               41123
      FORMAT (7/53H CONDITIONS BEHIND REFLECTED SHOCK AT SECONDARY DIAPH
186
                                                                               41174
                                                                               11174
187
      FORMAT (732H EXPANSION TUBE PHASE OF PROGRAM)
                                                                               A1136
      FORMAT (//32H INPUTS FOR EXPANSION TUBE PHASE)
188
                                                                               41117
189
      FORMAT (/72H
                                  05
                       U5
                                            YAS
                                                       DELU5
                                                                 ISAV IEXP I
                                                                               41138
     TREP NVEL TAC JAC )
                                                                               11139
190
      FORMAT (4F10.3.615)
                                                                               41140
191
      FORMAT (40H FROZEN ENTHALPY IN REGION 4 IS NEGATIVE)
                                                                               41141
192
      FORMAT (/16H A5F IS NEGATIVE)
                                                                               A1142
      FORMAT (//34H 5 CONDITIONS FOR FROZEN EXPANSION)
193
                                                                               ATTAR
      FORMAT (41H FROZEN EXPANSION--FOUILIBRIUM POST SHOCK)
104
                                                                               A1144
      FORMAT (37H FROZEN EXPANSION-- FROZEN POST SHOCK)
195
                                                                               61145
196
      FORMAT (754H AEDC REAL-AIR TAPE USED FOR UNSTEADY EXPANSION-IEXP=1
                                                                              A1146
                                                                               41147
107
      FORMAT (753H PERFECT AIR PELATIONS USED FOR NUMERICAL INTEGRATION)
                                                                               ATTAR
198
      FORMAT (755H AFDC CURVE FIT EXPRESSIONS USED FOR UNSTRADY EXPANSIO
                                                                              A1149
                                                                               A1150
199
      FORMAT (750H HS LT 5F+4- FQUILIBRIUM 5 CONDITIONS NOT COMPUTED)
                                                                               41151
      FORMAT (//37H QUANTITIES IN REGION 5 OFF AFDC TAPE)
200
                                                                               41152
      FORMAT (53H THESE QUANTITIES DETERMINED FROM IDEAL AIR RELATIONS)
201
                                                                              A1157
      FORMAT (7/39H 5 CONDITIONS FOR EQUILIBRIUM EXPANSION)
202
                                                                               41154
      FORMAT (//47H STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55)
203
                                                                               11155
204
      FORMAT (46H FOUILIBRIUM EXPANSION -- FOUILIBRIUM POST SHOCK)
                                                                              A1196
205
      FORMAT (/108H
                                  RHO
                                            Ť
                                                                  C/D
                                                                              A1157
     17
                 GAME
                                      u
                                                           RATIOS
                                                                              A1158
206
      FORMAT (11E10.3)
                                                                              A1159
207
      FORMAT (7/49H STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS)
                                                                              ATTAC
      FORMAT (/97H
208
                     D
                                                      н
                                                                              A1161
     LAME
                Δ
                          OT
                                     PN
                                               TIMES
                                                                              A1162
      FORMAT (10E10.3)
209
                                                                              41163
210
      FORMAT (//48H ACCELERATION AIR CONDITIONS (REGION 20) AND PLO)
                                                                              41164
```

```
81165
                                                                 720
                                            TPO
                                                      H20
                                BH050
211
      FORMAT (101H
                      P20
                                                                              ATTER
                                               PATIO
                                    M510
                         USIO
                P10
                                                                              A1167
212
      FORMAT (10E10.3)
      FORMAT (7/53H ACCELERATION AIR FLOW PARAMETERS USING MIRELS THEORY
                                                                              ATIAR
213
                                                                              81160
                                                                 L/LMAX
                                                                              A1170
      FORMAT (/97H
                                           LMAX
214
                                                                              A1171
                         01/05
                                   US20/UI
                                               TIMIT
     1 TIM
               UL
      FORMAT (7/50H ACCELERATION AIR LEAKY PISTON EFFECT NOT COMPUTED)
                                                                              A1172
215
                                                                              A1173
216
      FORMAT (10F10.3)
      FORMAT (/34H EXPANSION TUNNEL PHASE OF PROGRAM)
                                                                              A1174
217
                                                                              A1175
      FORMAT (//34H INPUTS FOR EXPANSION TUNNEL PHASE)
218
                                                                              A1176
                                                                ISAVI
                                P6
                                          D-THROAT D-NOZZLF
      FORMAT (/47H
219
                      UK
                                                                              61177
      FORMAT (4F10.3.115)
220
                                                                              A1178
      FORMAT (740H FROZEN ENTHALPY IN REGION 5 IS NEGATIVE)
221
                                                                              41170
      FORMAT (746H A6F NEGATIVE - FROZEN CONDITIONS NOT COMPUTED)
222
                                                                              A1180
      FORMAT (//41H 6 CONDITIONS FOR FROZEN NOZZLE EXPANSION)
223
      FORMAT (//47H STATIC CONDITIONS BEHIND BOW SHOCK - REGION 65)
                                                                              ATTRI
224
      FORMAT (7/51H, STAGNATION CONDITIONS BEHIND BOW SHOCK - REGION: TA)
                                                                              ALIRA
225
      FORMAT (//44H H6 LESS THAN 200F+4- T6 LESS THAN 20 DEG K)
                                                                              ALIAS
226
                                                                              A1184
      FORMAT (743H AEDC TAPE USED FOR STEADY NOZZUF EXPANSION)
227
                                                                              ALIBS
      FORMAT (753H AEDC CURVE FIT EXPRESSIONS USED FOR NOZZLE EXPANSION)
228
      FORMAT (754H REGION 6 QUANTITIES OFF TAPE - PERFECT RELATIONS USED
                                                                              A1186
229
                                                                              ATTAT
     1.1
      FORMAT (7/46H & CONDITIONS FOR FOUILIBRIUM NOZZLE EXPANSION)
                                                                              41188
230
                                                                              ATTRO
      FORMAT (7/45H STATIC CONDITIONS BEHIND BOW SHOCK-REGION 65)
231
      FORMAT (7/49H STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TA)
                                                                              41100
232
                                                                              A1191
                                 RHO
233
      FORMAT (/109H
                                                                              A1192
                            αт
                                               A/ASTAR
                                                          DELSTARY
                                       ₽N
      1 GAME
                  Λ
                                                                              F011A
      FORMAT (4A10)
234
                                                                              41194
275
      FORMAT (1H1+A10/)
                                                                              A1195-
                                                                              R
                                                                                  1
      SUBROUTINE VISC (T.P.VIS)
                                                                              R
                                                                                  2
      DIMENSION TAPY(4) . TABTY(13) . TABNUY(52)
                                                                              P
c
      TABLE OF VISCOSITY FROM YOS(AVCO RAD-TM-63-7)
c
r
      DATA TAPY/1.01325F+5.3.03975E+5.1.01325F+6.3.03975F+6/
      DATA TABTY/1000..2000..3000..4000..5000..6000..7000..8000..9000..1
                                                                                   B
      10000..12000..14000..16000./
      DATA TABNUY/0418F-4.0648F-4.0858F-4.1.08F-4.1.30F-4.1.54F-4.1.86F-
                                                                                   0
      14.2.21E-4.2.45E-4.2.63E-4.2.63E-4.1.77E-4..96E-4..41BF-4..648F-4..
                                                                              10
      2857F-4.1.07E-4.1.30F-4.1.52F-4.1.80F-4.2.14F-4.2.45F-4.2.66F-4.2.8
                                                                                  1 1
      35E-4.2.34E-4.1.53F-4..418F-4..648F-4..857F-4.1.07E-4.1.30F-4.1.51F
                                                                                  12
                                                                              P
      4-4.1.76E-4.2.06E-4.2.4E-4.2.67E-4.3.00F-4.2.82F-4.2.24F-4..41RF-4.
                                                                                  13
                                                                              Р
      5.648F-4..8565-4.1.06F-4.1.27E-4.1.59E-4.1.73F-4.2.9PF-4.2.32F-4.2.
                                                                                  14
                                                                                  15
                                                                              663E-4+3+06E-4+3+10F-4+2+66E-4/
                                                                              16
       IF (ToLE : 1500 .) GO TO 2
       IF (T.GT.16000..0R.P.GT.3.04F+06) GO TO 1
                                                                                  17
                                                                              Ħ
                                                                              Þ
                                                                                  18
       CALL DISCOT (T.P.TABTY.TARNUY.TARY.11.52.4.VIS)
                                                                                  10
                                                                              Þ
       GO TO 3
                                                                              Ω
                                                                                  20
       V15=1.0
 1
                                                                               R
                                                                                  21
       GO TO 3
                                                                               п
                                                                                  22
       VIS=1.462F-6#SQRT(T)/(1.+112./T)
                                                                                  23
                                                                               р
 3
                                                                                  24-
       ENO
                                                                               ۲
                                                                                   1
       SUPPOUTINE SHOCK (BN.CN.DN.PN.UN.PN.HN)
                                                                               C
                                                                                   2
       RN=RN*UN
       CM=BN+BN&NN##S
                                                                               Ċ,
                                                                                   4
       DN=HN+.5*UN**2
                                                                                   5
       DETHEN
                                                                               Ċ.
       F.MO
       FUNCTION FOFAXT (AXT)
                                                                                   2
       COMMON ZBUK6Z BETAL . PETA?
                                                                                   3
       FOFAXT=--4*BETA1--25*ALOG((1--AXT)/(1-+AXT))+-5#ATAN(AXT)-AXT
                                                                               n
                                                                                   4
       RETURN
       END
```

```
FUNCTION MORBET (BXT)
                                                                                  _
      COMMON ZBEKAZ BETAL PRETAZ
                                                                                       43
      FOFBXT=-+4*8FTA1++25*ALOG((1++BXT)/(1+-BXT))++5*ATAN(BXT)-+4*BXT+*
                                                                                       3
     15ZBETA2-BXT
                                                                                  _
                                                                                       4
      RETURN
                                                                                       E
      ENIO
                                                                                       A ..
      FUNCTION FORAX (AX)
      COMMON /81K6/ BETA1 BETA2
                                                                                  _
                                                                                       2
      FOFAX=-BETA1-ALOG(1.-AX)-AX
                                                                                  _
                                                                                       ~
      DE TURN
                                                                                  4
      END
                                                                                  E
                                                                                       E _
      FUNCTION FOREX (BX)
                                                                                  G
      COMMON /BLKA/ PETAL PETA2
                                                                                  G
                                                                                       >
      FORBX = -BETA1 -ALOG (1 + -BX) -BX**2/BETA2-BX
                                                                                  G
                                                                                       ~
      RETURN
                                                                                  G
                                                                                       Δ
      ENO
                                                                                  ~
                                                                                       2
      FUNCTION FORK (RN)
                                                                                  u
                                                                                       t
      COMMON ZBLKIZ BT4.CT4.RHOG
                                                                                  ы
                                                                                       >
      F0FX=RH0G-(PT4*RN**2+CT4*PN**3)
                                                                                  н
      P⊄THDN
                                                                                  н
                                                                                       Δ
      END
                                                                                  ы
                                                                                       _
      FUNCTION FOFR (RNI)
                                                                                  7
                                                                                       1
      COMMON /BLK2/ BTI.CTI.TI.CVRI.S4R.SRFF.DBTI.DCTI
                                                                                  Ţ
                                                                                       2
      A=CVRT*ALOGETTS
                                                                                  7
      R=ATI+TI*DATI
                                                                                  T
                                                                                       Δ
      1120411+112=2
                                                                                       =
                                                                                  t
      FOFR=A-ALOGIRNI)-(PNI*B)-(RNI**2/2.)*C+SRFF-54P
                                                                                  Ī
                                                                                       A
1
      PETURN
                                                                                       8_
                                                                                  7
      FUNCTION FORMS (MSN)
                                                                                  J
      COMMON /ALK3/ T1.GAMA.WA.T4.P4.P1
                                                                                  . 1
      REAL MAN
                                                                                       ~
                                                                                  J.
      \Delta = PA/P1
                                                                                  . .
                                                                                       ۵
      B=(GAM4-1.)/2.4
                                                                                  J
                                                                                       _
      C=SQRT(+04833*((T1*W4)/(GAM4*T4)))
                                                                                       6
                                                                                  J
      D=2.*GAM4/(GAM4+1.)
                                                                                       7
                                                                                  . 1
      DEN=(1.-B*C*(MSN-1./MSN))***
                                                                                       ø
                                                                                  . 1
      FOFMS=SQRT(((A*DFN)+.1667)/1.1667)
                                                                                       a
                                                                                  J
      RETURN
                                                                                      10
                                                                                  J
      END
                                                                                      11-
                                                                                  .1
      SUBROUTINE SIMP (TARX. TARY. N. NMAX. TARANS.)
                                                                                       1
      DIMENSION TARX (NMAX) . TARY (NMAX) . TARANS (NMAX)
                                                                                  v
                                                                                       2
      DIMENSION NP (4)
                                                                                  ٧
      COMMON ICOUNT . IMET (2) . NP . ABAR . ME . ME . SAR . L CODE . DEL LI
                                                                                       4
      COMMON /BLK4/ LF+NON+LU+NDRIV+LR+LD+LG
                                                                                  K
                                                                                       Ε,
      TARANS (1)=0
                                                                                       4
      DEN=2.
      K=2
                                                                                       R
      TABX(THAT IS TABHR) IN DECREASING ORDER - DELY THUS NEGATIVE
C
      DO 1 J=K+N
                                                                                      1 ^
      NON=J
                                                                                  v
                                                                                      1 1
      DELX=(TABX(J)-TABX(J-1))/DEN
                                                                                  K
                                                                                      12
      X=TARX(J-1)+DFLX
                                                                                      1 7
                                                                                  K
      CALL FILUP (X,Y,-2,N,TARX,TARY)
                                                                                  K
                                                                                      14
      SUM=(TABY(J-1)+4.*Y+TARY(J))*(ABS(DFLX))/3.
                                                                                  ۲
                                                                                      150
      TABANS(J)=TABANS(J-1)+SUM
                                                                                  v
                                                                                      16
Ī
      CONTINUE
                                                                                      17
      RETURN
                                                                                      12
      END
                                                                                      10-
      SUBROUTINE SNS (RX.UX.PX.HX.SX.TX.AX.ZX.GX.ZSX.MX.RSX.USX.DSX.HSX.
                                                                                      1
     IHTX.PTX.RTX.STX.TTX.ATX.ZTX.GTY.ZTSX)
                                                                                      2
      DIMENSION X(4). Y(4.9.150). 7(9). U(4). V(4). V(4). NO(4)
                                                                                  .
      REAL MS1 + M2 + M5 + M5 + MX + MN + MN 5
                                                                                       4
                                                                                  1
      COMMON ICOUNT. IMET (2).NP. APAR.ME. SAR.LCODE.DELU.ISAV
                                                                                      E
                                                                                  L
      CALL SHOCK (BSN.CSN.DSN.DSX.USX.PSY.HSY)
                                                                                       4
      IMFT(1) = IMFT(2) = 0
```

```
0
                                                                               L
      IT=R
                                                                                    O
      NV=9
                                                                               1.
      15P=1
                                                                                   1 1
                                                                                1.
      RX=120#R5X
                                                                                   12
                                                                                L.
      HTX=nSN
                                                                                   13
1
      UX=PSN/RX
                                                                                   14
                                                                                t
      PX=CSN-BSN*UX
                                                                                   1=
                                                                                Ļ
      HX=DSN-.5#UX**2
                                                                                   16
                                                                                i.
      90 TO (2.3) . ISAV
      CALL SEARCH (PX.RMEW.HX.SX.TX.AX.7X.GY.7SX.TSP)
                                                                                   17
                                                                                ١.
2
                                                                                   , 🗅
                                                                                t.
      GO TO 4
                                                                                   1 🔾
                                                                                L
3
      CALL SAVE (PX.RNEW.HX.SX.TY.AX.7X.GX.3)
                                                                                   20
                                                                                L
      ZSX=ZX
                                                                                   21
      IF (ABS(10-RX/RNEW).LF.0001) GO TO 5
                                                                                1_
4
                                                                                   22
                                                                                ŧ.
      RX=RNEW
                                                                                   23
      GO TO 1
                                                                                   24
5
      RX=RNEW
                                                                                1
      MX=UXZAX
                                                                                   26
                                                                                1_
      STX=SX
                                                                                   27
                                                                                L
      GO TO (6.7). ISAV
                                                                                   20
                                                                                Ł
      HTX=HX+o5*UX**2
6
                                                                                    'nО
                                                                                1_
      7(4)=HTX/287a0245
                                                                                    20
      7(4)=ALOG10(7(4))
                                                                                    71
      CALL SLOW (SX.7.4.3. [T.NV.NEPR.Y.X)
                                                                                    22
                                                                                L
      PTX=(10.0**7(3))*1.013245F+5
      CALL SEARCH (PTX+RTX+HTX+STX+TTX+ATX+ZTX+GTX+ZTSX+ISP)
                                                                                    73
                                                                                    74
                                                                                t_
      STX=SX
                                                                                    2 =
      GO TO 9
                                                                                    36
      PTX=PX*(1o+((GX-1o)/2o)*MX**2)**(GY-1o1)
                                                                                Ų.
7
                                                                                    37
      CALL SAVE (PTX.RTX.HTX.STX.TTX.ATX.7TX.GTX.1)
В
                                                                                    28
                                                                                t.
      フエミソニアナソ
                                                                                    70
      IF (A85(1.-HTX/(HX+.5*UX**2)).LF..OO1) GO TO 9
                                                                                Ł
                                                                                L
                                                                                    40
      PTX=(PTX*(HX+o5*UX**2))/HTX
                                                                                    41
                                                                                L
      GO TO B
                                                                                    12
                                                                                1._
9
      RETURN
                                                                                    43-
                                                                                1_
      SUBROUTINE BOT (BTM.CTM.DBM.DCM.D2PM.D2CM.TM)
                                                                                м
                                                                                ķ
      COMMON /BLK4/ LF.NON.LU.NDRIV.LR.LD.LG
                                                                                M
      IF (MDRIV.FO.1) GO TO 1
                                                                                     Δ
C
      HELTUM USED AS DRIVER GAS
                                                                                м
C
C
      AMT1=15.8922-ALOG (TM)
                                                                                     А
                                                                                M
      AMT2=-3.7156F-3*TM
                                                                                     0
                                                                                 м
      BTM=3.3565F-6*AMT1*#3-2.0085F-3*FXP(AMT2)
                                                                                    10
      CTM=5.633F-12#AMT1##6
      DBM=(-1.000695E-5/TM)*AMT(**2+7.4628E-6*EXP(AMT2)
                                                                                    1 1
                                                                                    12
      DCM=(-3.3798F-11/TM)*AMT1**5
      D28M=(2.0139E-5/TM**2)*AMT1+().006955-5/TM**2)*AMT1**2-2.77295-8*5
                                                                                    13
                                                                                    14
      (STMA) PXI
       D2CM=(1.6899F-10/TM**2)*AMT1**4+(3.7798F-11/TM*#2)*AMT1**5
                                                                                 M
                                                                                    15
                                                                                    1 4
       GO TO 2
                                                                                    , 7
       HYDROGEN USED AS DRIVER GAS
C
                                                                                    18
       BTM=1.6994F-3*TM**.25
1
                                                                                 6.4
                                                                                    19
       CTM=2.1E-4
                                                                                    20
                                                                                 M
       DBM=4.2485F-4*TM**(-.75)
       DCM=D2CM=O.
       D28M=-3.1864F-4*TM**(-1.75)
                                                                                 Ŋ
                                                                                    22
                                                                                    22
       RETURN
 2
                                                                                    24-
       END
       SUBROUTINE SEARCH (P.PHO.HI.SOR.TI.A1.71.GAM.75.150)
       DIMENSION G(4) + Y1(4) + Y2(4) + Y3(4) + Y4(4) + Y5(4) + Y6(4) + Y7(4)
                                                                                 Nt
                                                                                     2
       DIMENSION ICOUNT(25). UFLAG(25). V(0.150). P(25). PHO(25)
                                                                                     7
                                                                                 NJ
       DIMENSION SAVEH(25.4). SAVED(25.4). SAVET(25.4). SAVEA(25.4)
                                                                                 N
                                                                                     Δ
       DIMENSION SAVEZ(25,4). SAVES(25,4), SAVES(25,4), SAVES(25,4)
                                                                                     5
                                                                                 ٩ï
       DIMENSION HI(25). TI(25). AI(25). 71(25). SOR(25). GAM(25). 75(25)
```

```
DIMENSION TART(150). TARR(150). TARR(150). TARR(150)
                                                                                      N.
       DIMENSION TARA(150) + TARZ(150) + TARG(150) + TARZS(150)
                                                                                           A
                                                                                      M
       DO 1 1=1-15P
                                                                                           ^
       ICOUNT (I) = I
                                                                                      . 1
                                                                                          10
       JELAG(I)±0
                                                                                      N
                                                                                          1.1
1
       CONTINUE
                                                                                      ы
                                                                                          12
       JUMP=0
                                                                                      ы
                                                                                          17
       TT=R
                                                                                      N
                                                                                          1 4
       REVIND IT
                                                                                         1=
                                                                                      N
2
       READ (IT) X \cdot NV \cdot ((Y(I \cdot L) \cdot I = 1 \cdot 9) \cdot I = 1 \cdot NV)
                                                                                      K.I
                                                                                         16
       IF (ENDFILE IT) 3.6
                                                                                         17
                                                                                      N
3
       CONTINUE
                                                                                      N
                                                                                         18
       WRITE (6:16)
                                                                                          10
                                                                                      .,
       DO 5 I=1.ISP
                                                                                      N.
                                                                                         20
       IF (JELAG(1).F0.0) On TO 4
                                                                                      R.F
                                                                                         21
       GO TO 5
                                                                                      K.
                                                                                         22
'n
       CONTINUE
                                                                                      M
       RHO(1)=0.
                                                                                         24
       T1(1)=0.
                                                                                      ۸ı
                                                                                         25
       A1(1)=0.
                                                                                         26
                                                                                      N
      71(1)=0.
                                                                                      N
       SOR(1)=0.
                                                                                         28
       GAM ( 1 ) = 0 .
                                                                                      N
                                                                                         20
      ZS(1)=0.
                                                                                         20
                                                                                      NI
5
      CONTINUE
                                                                                      M
                                                                                         31
      GO TO 15
                                                                                      м
                                                                                         32
6
      CONTINUE
                                                                                      Νŧ
                                                                                         22
       DO 14 J=1.ISP
                                                                                         34
                                                                                      N
       IF (JELAG(J) . FO . 1) GO TO 14
                                                                                         75
                                                                                      N
      NN=ICOUNT(J)
                                                                                      KI.
                                                                                         26
      PP=ALOGIO(P(J)/1.01325F+5)
                                                                                         37
                                                                                      N
      HH=ALOG10(H1(J)/287.0245)
                                                                                      Ŋ
                                                                                         78
       IF ((PP-Y(3+1))*(PP-Y(3+NV))+LT+0+) GO TO 7
                                                                                      N
                                                                                         ·~ ^
       SAVFH(J.11=0.
                                                                                      N
                                                                                         40
       SAVER(J+11=0.
                                                                                         a 1
                                                                                      M
      SAVET(J:1)=0.
                                                                                         42
                                                                                      K1
       SAVFA(J.1)=0.
                                                                                         47
      SAVEZ(J+1)=0.
                                                                                      N
                                                                                         44
       SAVES(J.1)=0.
                                                                                         45
                                                                                      N.F
      SAVEG(J.1)=0.
                                                                                      N
                                                                                         46
       SAVEZS (J.11=0.
                                                                                      N
                                                                                         47
      NN= 2
                                                                                     N
                                                                                         AR
      GO TO 10
                                                                                         40
                                                                                     ы
7
      DO 8 1=1.NV
                                                                                         50
      TABT(1)=Y(1+1)
                                                                                     N
                                                                                         51
      TARR(1)=Y(2,1)
                                                                                     N
                                                                                         E 2
      TARP(1)=Y(3,1)
                                                                                         =3
                                                                                     Ν
      TARH(1)=Y(4.1)
                                                                                         54
                                                                                     N
      TARG([)=Y(5.])
                                                                                         55
                                                                                     N
      TAPA(1)=Y(6.1)
                                                                                     M'
                                                                                         56
      TAP7(1)=Y(7,1)
                                                                                     M
                                                                                         = 7
      TAR75(1)=Y(9.1)
                                                                                         58
                                                                                     N1
      CONTINUE
                                                                                         50
                                                                                     N
      CALL DISCOT (PP.PP.TARP.TARH.TARH.-130.NV.0.ANS1)
                                                                                     N
                                                                                         60
      CALL DISCOT (PP.PP.TABP.TABR.TABR.-130.NV.0.ANSZ)
                                                                                         61
      CALL DISCOT (PP+PP+TARP+TART+TART+-130+NV+0+ANS3)
                                                                                     N
                                                                                         62
      CALL DISCOT (PP.PP.TABP.TABA.TABA.-130.NV.0.ANS4)
                                                                                         A3
                                                                                     N
      CALL DISCOT (PP.PP.TARP.TARZ.TARZ.-130.NV.0.ANSS)
                                                                                     N
                                                                                         64
      CALL DISCOT (PP.PP.TABP.TARG.TARG.-130.NV.0.4NS6)
                                                                                     Ŋ
                                                                                         45
      CALL DISCOT (PP.PP.TARP.TARZS.TARZS.-130.NV.0.ANS7)
                                                                                     NI
                                                                                         44
      SAVES(J+NN)=X
                                                                                         57
                                                                                     N
      SAVEH (J.NN) = ANS1
                                                                                         45
                                                                                     N
      SAVER (J.NN) = ANS?
                                                                                     M
                                                                                         40
      SAVET (J+NN) = ANS3
                                                                                         70
                                                                                     M
      SAVEA (J.NN) = ANS4
                                                                                     N
                                                                                         71
      SAVEZ (J.NN) = ANSS
                                                                                     N
                                                                                         72
```

	SAVEG(J:NN)=ANS6	N	77
	SAVEZS(J.NN)=ANSZ	N	74 75
	IF (SAVEH(U:NN)=GT:HH) GO TO 11	N	76
	IF (NN.EQ.3) GO TO 9	NI Ni	77
	NN = NN + 1	N) N)	70
_	60 TO 10	M	70
Ġ	SAVER(J.1)=SAVER(J.2)	8.3	RA
	SAVEH(J.1)=SAVEH(J.2)	N/	P. f
	SAVET(J.1)=SAVET(J.2)	М	ρo
	SAVEA(J:1)=SAVEA(J:2) SAVEZ(J:1)=SAVEZ(J:2)	N.	p3
	SAVES(Jol)=SAVES(Jo2)	M	24
	SAVEG(J+1)=SAVEG(J+2)	N	ΩŒ
	SAVEZS(J+1)=SAVEZS(J+2)	N	RA
	SAVER(J.2)=SAVER(J.3)	M	87
	SAVEH(J.2)=SAVEH(J.3)	N	ЫÞ
	SAVET (J.2)=SAVET (J.3)	M	ÞΩ
	SAVEA(J.2)=SAVEA(J.7)	N	90
	SAVE7(J+2)=SAVÉ7(J+3)	N	O t
	SAVES(J.2)=SAVES(J.3)	M	02
	SAVEG(J.2)=SAVEG(J.3)	M	0.3
	SAVEZS(J+2)=SAVEZS(J+3)	N	04
10	ICOUNT(J)=NN	N)	05
•	GO TO 14	N	96
11	IF (NN.E0.4) GO TO 12	N	07
• •	NN=NN+1	N	OP
	NM=(L)TNU031	N	ao
	GO TO 14		100
12	JFLAG(J)=1		1 ^ 1
	nn 13 M=1∘4		102
	G(M)=SAVFH(J.M)		103
	Y1 (M)=SAVFR(U+M)		104
	Y2(M)=SAVFT(U+M)		105
	Y3(M)=2V4V2=(M)EY		106
	Y4(M)=SAVEZ(J+M)		107
	Y5(M)=SAVES(J+M)		108
	Y6(M)=SAVEG(J+M)		100
	Y7(M)=SAVFZS(J.,M)		117
1 7	CONTINUE		172
	CALL INTRP (4.G.Y). HH.R)		113
	CALL INTRP (4.G.YZ.HH.T)		114
	CALL INTRP (4.6.43.4H.A)		115
	CALL INTRP (4.G.Y4.HH.Z)		116
	CALL INTRP (4.G.Y5.HH.SP1) CALL INTRP (4.G.Y6.HH.GAMÍ)		117
	CALL INTRP (4.66.47.4HH.ZS1)	M	112
	RHO(J)=(10°##R)*1°291489	M	110
	T1(J)=T	N	120
	A1(J)=A#331.4184	ķΙ	121
	Z1(J)=7	N	122
	50R(J)=5R1	N	127
	GAM(J)=GAM1	N.	120
	7S(J)=7S1	N	125
	JJMP=JUMP+1	N	126
	TE (JUMP.FO.ISP) OF TO 15	N	127
14	CONTINUE	N	128
	GO TO 2		120
15	CONTINUE		130
- •	RETURN		171
_			172
c .			123
c			174
16	FORMAT (1H1.60X.7HWARNING////)		135
	FND		126-
	SUBROUTINE SLOW (XX+7+11+J1+11,NV+NEPR+Y+X)	0	1
c	TAPE IS WRITTEN WITH LINES OF CONSTANT XX	n	2

```
Z(11) AND XX ARE INDEPENDENT VARIABLES
C
        Z(J1) IS THE DEPENDENT VARIABLE
C
C
        AKE +1. IF XX INCREASES MONOTONICALLY ON TARE
                                                                                                ξ
                                                                                           ^{\circ}
C
        AK= -1. IF XX DECREASES MONOTONICALLY ON TARE
                                                                                            \wedge 
C
        IT= TAPE UNIT
       NV= NO. OF VARIABLES ON TAPE FOR EACH XX . (NOT GREATED THAN O)
C
                                                                                                А
C
        NO. OF POINTS FOR FACH XX NOT GREATER THAN 150
                                                                                                c
С
       BEGIN EXECUTION
                                                                                              10
       DIMENSION X(4), Y(4,9,150), 7(9), ((4), W(4), W(4), ND(4)
                                                                                              11
       COMMON ICOUNT . IMET (2) . NP . ARAR . ME . SAR . L CODE . DELU
                                                                                               12
       REAL ME.ME
                                                                                           1
                                                                                               17
       ICOUNT=ICOUNT+1
                                                                                               14
        IF (IMFT(1)) 3.1.3
                                                                                               15
       BACKSPACE IT
                                                                                               16
       READ (IT) DUM
                                                                                           \circ
                                                                                               17
       REWIND IT
                                                                                           0
                                                                                              18
       DO 2 K=1.3
                                                                                           0
                                                                                              10
       READ (IT) X(K) *J * \{(Y(K * I * L) * I = I * NV) * L = I * J\}
                                                                                              20
2
       NP(K)=J
                                                                                           O
                                                                                              21
       XW=X(2)-X(1)
                                                                                           \sim
                                                                                              22
       AK=ABS(XW)/XW
                                                                                           0
                                                                                              23
       DIR!=1.
                                                                                           \cap
                                                                                              24
       1MFT(1)=1
                                                                                           0
                                                                                              25
       XXX=XX
                                                                                              26
       NERR = 0
                                                                                              27
                                                                                           \sim
       IM=3
                                                                                              28
       GO TO 18
                                                                                           \sim
                                                                                              20
       NERR=0
                                                                                           n
                                                                                              30
Ĉ
       EXCEPT FOR FIRST TIME THROUGH
                                                                                           2
                                                                                              71
       IF ((XX-X(M1))*(XX-X(M2))) 25.25.4
                                                                                           \mathbf{c}
                                                                                              12
       TFMP=(XX-XXX)*AK
                                                                                               4.4
                                                                                            \sim 
       DIR2=ABS(TEMP)/TEMP
                                                                                           \cap
                                                                                              74
       GO=DIR1*DIR2
                                                                                              25
                                                                                           \circ
       XXY=YX

                                                                                               36
       DIRI=DIR2
                                                                                           0
                                                                                               77
       IF (DIR2) 5.35.16
                                                                                           \cap
                                                                                              38
C
                                                                                              20
                                                                                           \sim
C
       NEGATIVE DIRECTION
                                                                                           \circ
                                                                                              40
=
       IF (60) 6:35:7
                                                                                           \boldsymbol{\gamma}
                                                                                              41
6
       BACKSPACE IT
                                                                                           0
                                                                                              42
       BACKSPACE IT
                                                                                           0
                                                                                              43
       BACKSPACE IT
                                                                                              44
       GO TO 9
                                                                                           \cap
                                                                                              4=
٠,
       [M=[M-1
                                                                                           \cap
                                                                                              44
       IF (IM) 8.8.9
                                                                                           0
                                                                                              47
8
       1M=4
                                                                                              40
9
       M1 = 1M + 1
                                                                                          \circ
                                                                                              49
       BACKSPACE IT
                                                                                          0
                                                                                              50
       BACKSPACE IT
                                                                                          9
                                                                                              = 1
       IF (M1-4) 11 +11 +10
                                                                                              ج ب
10
       MITT
                                                                                          \cap
                                                                                              ⊏ 3
11
       M2=M1+1
                                                                                          ×4
       IF (M2-4) 13+13+12
                                                                                          0
                                                                                              55
12
       M2=1
                                                                                          \overline{\phantom{a}}
                                                                                              E.A.
13
       RFAD (IT) X(IM).J.((Y(IM.I.L).I=1.NV).L=1.J)
                                                                                          O
                                                                                              57
       U=(MI) 9N
                                                                                          0
                                                                                              EΩ
       IF ((XX-X(M1))*(XX-X(M2))) 25.25.14
                                                                                          0
                                                                                              59
14
       IF (X(MI)-X(M2)) 7.15.7
                                                                                          9
                                                                                              60
       FRECH. VARIABLE OFF FRONT END OF TAPE
                                                                                          0
                                                                                              61
15
       CONTINUE
                                                                                          \circ
                                                                                              42
       NEPR=1
                                                                                          \sim
                                                                                              43
       GO TO 36
                                                                                          \cap
                                                                                              64
Ç
                                                                                          \sim
                                                                                              45
~
       POSITIVE DIRECTION
                                                                                          0
                                                                                              46
16
       IF (GO) 17,35,18
                                                                                              A7
```

```
AB
17
      READ (IT) DUM
                                                                                      60

      READ (IT) DUM
                                                                                  0
                                                                                      70
      READ (IT) DUM
                                                                                      71
                                                                                  \circ
      GO TO 20
                                                                                      72
18
      [ M = | M + 1
                                                                                      77
                                                                                  \wedge
      IF (1M-4) 20,20.19
                                                                                      74
19
      1 M≈1
                                                                                      75
                                                                                  0
      M1 = 1 M - 1
                                                          . .
                                                                                      76
                                                                                  \circ
      IF (M1) 21.21.22
                                                                                  \sim
                                                                                      77
21
      M! = 4
                                                                                      78
                                                                                  0
      M2=M1-1
                                                                                      79
      IF (M2) 23:23:24
                                                                                  0
                                                                                      Br
23
      M2=4
                                                                                      81
                                                                                  \sim
      READ (IT) X(IM) . J . ((Y(IM . I . L) . I = I . NV) . L = I . J)
                                                                                  0
                                                                                      82
      NP([M]=J
                                                                                      83
       IF ((XX-X(M1))*(XX-X(M2))) 25.25.18
                                                                                  \circ
                                                                                      RΔ
                                                                                      85
       TAPE SEARCH COMPLETE . DO CROSS FOUR POINT
Ċ.
                                                                                      86
25
      DO 34 K=1.4
                                                                                      9.7
       NPK=NP(K)-1
                                                                                 . 0
                                                                                      22
       DO 26 I=1.NPK
                                                                                      QΟ
                                                                                   \circ
       IF ((Y(K.11.1)-Z(I1))*(Y(K.J1.I+1)-Z(I1))) 27.27.26
                                                                                   0
                                                                                      90
26
       CONTINUE
                                                                                   n
                                                                                      O 1
       NFRR=1
                                                                                      02
                                                                                   0
       GO TO 36
                                                                                      0.7
                                                                                   O
       IF (I-1) 29,28,29
27
                                                                                      OA
       J=0
28
                                                                                      05
                                                                                   O
       GO TO 32
                                                                                   \circ
                                                                                      96
       IE (I-NDK) 31,30,31
50
                                                                                      07
       J#NPK-3
30
                                                                                      OR
                                                                                   \cap
       GO TO 32
                                                                                      an
31
       J=1-2
                                                                                   0.100
       DO 33 L=1.4
32
                                                                                   0.101
       MX=L+J
                                                                                     102
       U(L)=Y(K.II.MX)
                                                                                   0 103
33
       V(L)=Y(K+J1+MX)
                                                                                   0 104
       CALL INTRP (4.U.V.Z(II).W(K))
34
                                                                                   0 105
       CALL INTRP (4.X.W.XX.Z(J1))
                                                                                   0 106
       RETURN
                                                                                   0 107
       CONTINUE
35.
                                                                                   0 108
       NFRR=1
 36
                                                                                   0 100
       IF (IMFT(2)) 38.37.38
                                                                                   0.110
37
       IMFT(2)=1
                                                                                     111
       LCODE=2
                                                                                   0 112
       WRITE (6.39) XX.II.7(11).J1
                                                                                   0 113
       RETURN
 38
                                                                                   0 114
Ç
                                                                                   0 115
C
                                                                                   0 116
(
       FORMAT (///39H NO SOLUTION ON TAPE FOR THE CONDITIONS//5x.6H S/R=
                                                                                   0.117
 30
      1F12.6.37X.9H FVALUATE/6X.2H7(I1.2H)=F16.P.38X.3H 7(I1.1H)///)
                                                                                   0.118
                                                                                   0 119-
                                                                                   D
       SUBROUTINE SAVE (P.RHO.H.SP.T.AM.7.SAME.K)
                                                                                        2
                                                                                   \Box
 C
           SAVE ORTAINS THERMODYNAMIC PROPERTIES FOR REAL AIR
 ¢
          IS BASED ON CURVE FIT EXPRESSIONS OF AFDC-TOR-63-138
                                                                                   O
                                                                                        ۵
 C
          EXPRESSIONS OF AEDC-TOR-63-138 APPLICABLE FOR TERM TO 15000
                                                                                   \Box
 C
                                                                                   D
 Ċ
          MAXIMUM PERCENT ERRORS- T=2000 TO 15000. AND D=1F+4 TO 1F+6
                                                                                        Ω
                                                             Z
                                                                       CAME
                                                                                   σ,
                                      T
                           Н
 ¢
                DHO.
                                                                                       10
                                                            へ。マニ
                                                                       F.58
                                                 2°28
                2.42
                          1.95
                                      2.24
 C
                                                                                    Ü
                                                                                       1.1
 C
                                                                                       12
                                                                                    Р
           INPUTS ARE PRESSURF (N/SQ METER) AND-
 C
                                                                                    \Box
                                                                                       13
                 (1) FNTROPY S/R (K=1)
 C
                 (2) DENSITY: KGZCUBIĆ METER (K=2)
                                                                                   ь
                                                                                       14
 C
                                                                                       15
                 (3) ENTHALPY. SO METER/SO SEC. (K=3)
```

```
C
                                                                                     16
C
          ALSO. INPUTS DENSITY AND ENTHALPY ARE INCLUDED (K=4)
                                                                                  P
                                                                                     17
C
                                                                                  Þ
                                                                                     19
c
                                                                                  D
                                                                                     10
c
          MODIFIED 9/7/71 FOR INPUTS P AND T (K=5)
                                                                                  О
                                                                                     20
C
                                                                                  0
                                                                                     21
       DIMENSION TARSR(6) . TARR(6) . TABH(6)
                                                                                  D
                                                                                     22
       DIMENSION TARPM(13). TARHM(13). TAPSRM(13). PM(13)
       DIMENSION TABLE (17). TARRE (17). TARSER (17). TARRE (17). TARRE (17)
                                                                                  D
                                                                                     24
       WO=28.967
                                                                                  D
                                                                                     25
       RUN1V=8314+34
                                                                                     26
       NN±∩
                                                                                  27
       MM=0
                                                                                  0
                                                                                     20
       IF (K+NE+5) GO TO 3
                                                                                  O
                                                                                     20
       ZZ= . 8
                                                                                  D
                                                                                     34
       DO 2 11=1-17
                                                                                  D
                                                                                     71
       RHO=P*WOZ(RUNIV*ZZ*T)
                                                                                  P
                                                                                     72
       TABRR(II)=RHO
                                                                                  Þ
                                                                                     32
       GO TO 6
                                                                                  Þ
                                                                                     34
       TARSER(||)=SR
                                                                                  Þ
                                                                                     35
       TARHR([[]=HA
                                                                                  ь
                                                                                     36
       TARZR(!!)=Z
                                                                                  •
                                                                                     77
       TARTR([[]=TA
                                                                                  D
                                                                                     20
       77=77+.2
                                                                                  D
                                                                                     30
       MM = 0
                                                                                  Р
                                                                                     40
       NN=0
                                                                                  41
       CONTINUE
                                                                                  42
      CALL FILUP (T+SR+2+17+TARTR+TARSPR)
                                                                                  Р
                                                                                     47
      CALL FILUP (T.H.2.17.TAPTQ.TARHQ)
                                                                                  D
                                                                                     44
      CALL FILUP (T.Z.2.17.TARTR.TARZR)
                                                                                  D
                                                                                     45
      CALL FTLUP (T+RHO+2+17+TARTR+TARRR)
                                                                                  D
                                                                                     46
      MM=3
                                                                                  D
                                                                                     47
      GO TO B
                                                                                  D
                                                                                     ΔQ
3
      IF (K.NE.4) GO TO 6
                                                                                  Þ
                                                                                     40
      CON5=+03
                                                                                  D
                                                                                     = ^
      DO 5 J=1-13
                                                                                  D
                                                                                     5 1
      PM(J)=RHO*H*CON5
                                                                                     52
                                                                                  P
      TARPM(U)=DM(U)
                                                                                  D
                                                                                     E 3
      P=PM(J)
                                                                                  0
                                                                                     54
      GO TO 6
                                                                                  o
                                                                                     ~~
4
      AH=(U)MHAAT
                                                                                 П
                                                                                     56
      TARSRM(J)=SR
                                                                                 67
      CON5=CON5++03
                                                                                     Eρ
                                                                                 D
      MM = 0
                                                                                     50
                                                                                 O
      NN = 0
                                                                                  0
                                                                                     40
5
      CONTINUE
                                                                                 0
                                                                                     61
      CALL FILUP (H.P.2.13.TARHM.TARPM)
                                                                                  D
                                                                                     62
      CALL FILUP (H.SR.2.13.TAPHM.TABSRM)
                                                                                 0
                                                                                     43
                                                                                 P
                                                                                     44
6
      PLOG=ALOG10(P/1.01325F+5)
                                                                                 D
                                                                                     4=
      A=PLOG*PLOG
                                                                                  Ü
                                                                                     46
      C=A*PLOG
                                                                                 D
                                                                                     47
      IF (K*FQ*1) GO TO B
                                                                                     AR
                                                                                 D
      IF (K+EQ+4+AND+MM+FD+3) GO TO 8
                                                                                     69
                                                                                 O
      SRUP=142.
                                                                                 D
                                                                                     70
      SRLOW=14.
                                                                                     71
      SR=(SRUP-SRLOW)/2+14+
                                                                                 •
                                                                                     72
      DELSR= (SRUP-SPLOW)/2.
                                                                                 0
      IF (NN.EQ.O) GO TO B
                                                                                     70
                                                                                 D
      SR=SRUP-DFLSR
                                                                                 Þ
                                                                                     75
      SRLOG=ALOGIO(SR)
                                                                                 P
                                                                                     76
      B=SRLOG*SRLOG
                                                                                     77
                                                                                 D=B*SRLOG
                                                                                 Б
                                                                                     70
      X15=-39.1442+83.0558*SRLOG-38.2842*SRLOG*SRLOG
                                                                                 D
                                                                                     79
      X151=-10.*(PLOG-X15)
                                                                                     Q.O
                                                                                 0
      IF (X151~40.) 10.9.9
                                                                                     ρţ
```

```
92
                                                                                 6
a
      T15=0.0
                                                                                    03
      GO TO 13
                                                                                 _
                                                                                    0 4
10
      IF (x151+40.) 11.12.12
                                                                                 _
                                                                                    05
1 1
      T15±1°0
                                                                                    04
                                                                                 GO TO 13
                                                                                    87
      T!S=10/(10+FXP(X151))
12
                                                                                    e e
                                                                                 п
13
      IF (K.EQ. 3. AND. MM. NF. 2) GO TO 39
                                                                                    00
      IF (K.FQ.2.AND.MM.FQ.2) GO TO 39
                                                                                 6
                                                                                 0
                                                                                    00
         (K.FO.4.AND.MM.FO.3) GO TO 61
                                                                                    91
                                                                                 0
      1F
         (K.FQ.4.AND.MM.EC.2) GO TO 39
      IF (K.FQ.5.AND.MM.FQ.2) GO TO 39
                                                                                 02
                                                                                 Ď
                                                                                    02
      IF (K.FQ.S.AND.MM.FQ.3) GO TO BR
                                                                                 \mathbf{r}
                                                                                    \triangle A
Ċ.
                                                                                    05
                                                                                 _
         COMPUTING RHO AS A FUNCTION OF P AND SZP
C
                                                                                    04
Ċ
      XR12=-16.5527+57.45*SRL0G-30.8036*8
                                                                                    07
                                                                                 0
1 4
      XR23=499.544-938.91*cRL0G+609.028*8-135.995*0
                                                                                    QΒ
      XR34=360.507-634.538#SRL0G+389.174#8-82.4653#D
                                                                                 0
                                                                                    00
      XR45=489.628-458.5#59L0G+106.25#8
                                                                                 D 100
                                                                                 0
                                                                                  101
      XR121=-10.*(PLOG-XR121
                                                                                 o
                                                                                   102
      XR231 = -10 * (PLOG - XP23)
                                                                                 0
                                                                                   103
      XR341=-10.*(PLOG-XR34)
                                                                                 D
                                                                                   104
      XR451 = -10 * (PLOG - XR45)
                                                                                 \overline{\phantom{a}}
                                                                                  105
      IF (XRI21-40.) 15.18.18
                                                                                  106
                                                                                 \mathbf{p}
      IF (XR121+40.) 16:17:17
15
                                                                                 0 107
      TR12=1.0
16
                                                                                 0 108
      GO TO 19
                                                                                 0 100
17
      TR12=1a/(1a+FXP(XR121))
                                                                                 0 110
      GO TO 19
                                                                                 O 111
      TR12=0.0
18
                                                                                   112
10
      IF (XR231-40°) 20°23°23
                                                                                 р
                                                                                   117
20
       IF (XR231+40.) 21.22.22
                                                                                 P 114
       TR23=1.0
21
                                                                                 D 11=
       GO TO 24
      TR23=1 o / (1 o + EXP (XR231 )).
                                                                                 0 114
22
       GO TO 24
                                                                                 D 117
                                                                                 D 118
23
      TP23=0.0
                                                                                 0 110
       IF (XR341-40.) 25.28.28
24
                                                                                 0
                                                                                   120
25
       IF (XR341+40.) 26.27.27
                                                                                 В
                                                                                   121
       TR34=1 .
26
                                                                                   122
                                                                                 О
       GO TO 29
                                                                                 D 123
       TR34=10/(10+FXP(XR341))
27
                                                                                 D 124
       GO TO 29
                                                                                 0 125
      TR34=0.0
28
                                                                                   126
       IF (XR451-40°) 30°33°33
29
                                                                                   127
                                                                                 0
       IF (XR451+40°) 31°32°32
30
                                                                                 D
                                                                                   128
       TR45=1.0
31
                                                                                 P 129
       GO TO 34
                                                                                 D 130
       TP45=1 ./(1 .+FXP(XP451))
32
                                                                                 0 131
       GO TO 34
                                                                                 P 132
 33
       TR45=0.0
       RHCL1=15.951867-0.00228295*PLOG-15.994242*SRLOG+.0065187267*A+.530
                                                                                 О
                                                                                   133
34
      179685*PLOG*SRLOG+3.175974*B
                                                                                 D 134
       RHCL2=1541:1666-63:93035*PLOG-2993:1662*SRLOG+:935437*A+84:30375*S
                                                                                 P 135
      1RL0G*PL0G+1938.7061*8--.004746016*C-.6128404*A*SRL0G-27.422666*8*PL
                                                                                 P 136
                                                                                 P 137
      20G-419 0881#D
      RHCL3=427.4745-18.126622*PL0G-765.47626*SRL0G+.29343169*A+22.92687
                                                                                 D 178
                                                                                 D 130
      17#PLOG#SRLOG+456.717#8-.0017033404#C-.18068309#A#SRLOG-6.9143617#8
      2#PLOG-91:131851#0
       RHCL4=206.23144-8.2270278*PLOG-329.5465*SRLOG+.1324191*A+9.8884165
                                                                                 D
                                                                                   1 4 1
      1#PLOG#SRLOG+175.03931#P-.0010178454#C-.07654371#A#SRL0G-2.6920144#
                                                                                 P 142
                                                                                  P 143
      2B*PLOG-31.237834*D
       RHCL5=-399.52358+12.899477*PLOG+411.64144*SRL0G-.097694919*A-6.220
                                                                                 P 144
      14477*PLOG#SRL0G-106+6733#R
                                                                                  D 145
       RHCAL=RHCL1+(RHCL2-RHCL1)*TR12+(RHCL3-RHCL2)*TR23+(PHCL4-RHCL3)*TR
                                                                                 D 146
      134+(RHCL5-RHCL4)*TR45
                                                                                  P 147
       RH15=+79.282533+6.3537078#PLOG+179.22721#5PLOG+.12607098#A-8.40131
                                                                                 D TAR
```

```
122*PL0G*SRL0G-129.95269*B+.0010037437*C+.004185511*A*5RL0C+3.12569
                                                                              P 149
     266*PL0G*B+30*203862*h
                                                                              P 150
      RHCAL=RH15+(RHCAL-RH15)*T15
                                                                                151
      RHOA=(10.**RHCAL)*1.29233
                                                                              D
                                                                                152
      TE (K+E0+1) GO TO 39
                                                                              n
                                                                                152
      IF (K.FQ.3) GO TO 61
                                                                              D
                                                                                154
      IF (K.F0.2.4ND.MM.F0.1) OD TO 59
                                                                                155
         (K.EQ.4.AND.MM.FQ.1) OF TO 59
                                                                              P 156
      IF (K.EQ.5.AND.MM.EQ.1) GO TO 59
                                                                              P 157
C
                                                                              P 158
C
         CONVERGENCE TEST FOR K=2
                                                                              D
                                                                                150
C
                                                                              C
                                                                                160
      IF (ABS(1.-RHO/RHOA).LF..OOI) GO TO 39
                                                                              O
                                                                                161
      NN=NN+1
                                                                              P 152
      IF (RHO.GT.RHOA) GO TO 37
                                                                              P 163
35.
      SRLOW-SR
                                                                              P 164
      SRUP=SR+DFLSR
                                                                              P 155
      IF (DELSR.GT.1.) GO TO 7
                                                                              D 166
      TABSR(1)=SRLOW
                                                                              D
                                                                                167
      TARSR(6)=SRUP
                                                                              D
                                                                                160
      IF (K+EQ+2+OR+K+FQ+4) GO TO 36
                                                                              P 149
      IF (K.EQ.5) GO TO 36
                                                                              P 170
      N=2
                                                                              D 171
      GO TO 52
                                                                              D 172
36
      N=-2
                                                                              0 177
      GO TO 57
                                                                              Þ
                                                                                174
37
      SRUP=5R
                                                                              0
                                                                                175
      SRLOW=SR-DELSR
                                                                              0
                                                                                176
      IF (DFLSR*GT*1*) GO TO 7
                                                                              D 177
      TAPSR(1)=SRUP
                                                                              D 179
      TARSR(6)=SRLOW
                                                                              0 179
      1F (K+EQ+2+0R+K+FQ+4) GO TO 38
                                                                              Þ
                                                                                180
      IF (K+FQ+5) GO TO 38
                                                                              D
                                                                                121
      N=+2
                                                                              182
      GO TO 52
                                                                              P
                                                                                183
38
      N=2
                                                                              P 184
      GO TO 57
                                                                              D 185
C
                                                                              0 186
         COMPUTING ENTHALPY AS A FUNCTION OF P AND SZR
C.
                                                                                187
€.
                                                                                198
39
      IF (SRLOG-1.6) 40,40,41
                                                                              P
                                                                                180
40
      HRCAL=12.693869+5.3975312*PLOG-48.729217*SRLOG-.14961521*6-5.87887
                                                                              P 190
     174*PLOG*SRLOG+48.19278*8+.00090144132*C+.001151473*A*SRLOG+1.62828
                                                                              D 191
     229*PLOG*B-13.065267*h
                                                                              0 102
      GO TO 51
                                                                              D 103
41
      IF (SRLOG-1.76) 42.42.48
                                                                              P 194
      HR22=-156.37194+6.6959228*PLOG+269.93097*SPLOG-.097179945*A-7.5370
42
                                                                                105
     1714*PL0G*SRL0G~152*13866*R+*00087029937*C+*058364795*A*SRL0G+2*159
                                                                              D
                                                                                104
     22755*PL0G*8+28.940926*D
                                                                              197
      HR21=-84.008522+2.5761318*PL0G+107.06198*SPL0G-.014352904*A-1.5313
                                                                              D
                                                                                108
     1194*PLOG*SRLOG-32:316439#R
                                                                                100
      XH=-61.2053+114.103*SRL0G-47.5532*B
                                                                              Б
                                                                                200
      XH1 = -10 * (PLOG - XH)
                                                                              D
                                                                                201
      IF (XHI-40.) 43:45:46
                                                                              D
                                                                                212
43
      IF (XH1+40+) 44+45+45
                                                                              Þ
                                                                                203
44
      TH= 1 .
                                                                              D
                                                                                204
      GO TO 47
                                                                              P 205
      TH=1./(1.+EXP(XH1))
                                                                              P 206
      GO TO 47
                                                                                207
                                                                              P
46
      TH=0.0
                                                                                208
47
      HRCAL=HR21+(HR22-HR21)*TH
                                                                              Þ
                                                                                209
      GO TO 51
                                                                              D
                                                                                210
48
      1F (SRLOG-1.92) 49,49,50
                                                                              P 211
49
      HRCAL=-35.160671+.5366924*PLOG+56.00585*SRLOG-.022661358*A-.4847A3
                                                                              P 212
     105*$RLOG*PLOG-27.641087*R+.00058568839*C+.016299962*A*$PLOG+.14073
                                                                              P 217
     2606*B*PL06+4.712261*D
                                                                              D 214
      GO TO 51
                                                                              D 215
```

```
P 216
      HRCAL=+114。94796+4。004583#PLOG+180。08427#SRLOG-。041327787#A-4。0366
50
                                                                                217
     1535*PLOG#$RLCG+90.76006*R+.00040320694*C+.024360248*A*$PLOG+1.00462
                                                                               D
                                                                               915 0
     2299#PLOG#B+15.467804#D
                                                                               D 219
     HR15=28。160664-2。2339873#PL0G-59。053694#SRL0G+。054973544#4+3。71832
5 t
     157*PLOG*SRL0G+40.986503*B-.0004292698*C-.040726332#A*SPL0G-1.37045 P. 220
                                                                               D 221
     205*PL0G#R-8,253645#D
                                                                               D 222
      HRCAL=HR15+(HRCAL-HR15)*T15
                                                                               D 227
      HA=(10.##HRCAL)#287.0388
                                                                                224
      IF (K.FQ.1.0R.K.FQ.2) GO TO 61
                                                                                225
                                                                               Þ
      IF (K.FO.S) GO TO AL
                                                                               D 226
      IF (K.FQ.3.AND.MM.FQ.1) GO TO 55
      IF (K.EQ.4) GO TO 4
                                                                               D 228
                                                                               D 229
         CONVERGENCE TEST FOR K=3
C.
                                                                               0 230
Ċ
                                                                               \triangleright
                                                                                231
      IF (ABS(1.-H/HA).LF.,001) 50 TO 14
                                                                               P 232
      NN=NN+1
                                                                               0 233
      IF (HAGGTGH) GO TO 37
                                                                               P 274
      GO TO 35
                                                                               0 235
C
                                                                               0 276
С
         INTERPOLATION FOR DELSE LESS THAN 1
                                                                               D 237
                                                                                SIB
                                                                               D
52
      TAPH(!)=HA
                                                                               D 239
      DELSR=(TABSR(6)-TABSR(1))/5.
53
                                                                               P 240
      DO 54 1=2.5
                                                                               D 241
      TARSR([)=TARSR([-1)+DFLSR
                                                                               D 242
54
      CONTINUE
                                                                               P 247
      IF (K.EQ.2.OR.K.EQ.4) GO TO 58
                                                                               D 244
      IE (K.EQ.5) GO TO 58
                                                                               D 245
      DO 56 1=2.6
                                                                                 245
      MM = 1
      SR=TABSR(1)
                                                                               D 247
                                                                               D 248
      GO TO B
                                                                               D 240
      TARH(I)=HA
                                                                               D 250
      CONT INUE
      CALL FILUP (H.SR.N.G.TAPH.TABSR)
                                                                               D 251
                                                                                 252
      MM=2
                                                                               D 253
      GO TO 8 ;
                                                                               P 254
      TABR(1)=RHOA
57
                                                                               D 255
      GO TO 53
      DO 60 1=2.6
                                                                               D 256
58
      MM = 1
                                                                               0 258
      SR=TAPSR(1)
                                                                               D 2E0
      GO TO 8
                                                                               D 260
      TAPR(1)=RHOA
50
                                                                               P 261
      CONTINUE
60
      CALL FILUP (RHO+SR+N+6+TABR+TABSR)
                                                                               P 262
                                                                               D 263
      MM = 2
                                                                                 264
      GO TO 8
                                                                               0 245
\overline{\phantom{a}}
                                                                               P 266
         COMPUTING Z
C
                                                                               D 267
C
      XZ12=62.91-41.5*5RLOG
                                                                               D 268
                                                                               D 269
      XZ23=72.945-45.75#5RLOG
                                                                                 270
      XZ34=65.75-37.5*5RLQG
                                                                               0 271
      XZ45=62.92-72.0*5RL0G
                                                                               0 272
      X7121=-10.*(PL0G-X712)
                                                                               0 273
      XZ231=-10.*(PL0G-XZ23)
                                                                               0 274
      XZ341=-10°*(PLOG-XZ34)
      XZ451=-10.#(PLOG-XZ45)
                                                                               ロ タブド
       ZCAL2=519.80374-23.753514*PLOG-983.90729*SPLOG+.27296957#A+30.0843
                                                                               P 276
      179*PLOG*SRL0G+620.04168*P-.0021648826*C-.23710079*A*SRL0G-9.496903
                                                                               D 277
                                                                               D 278
      2#PLOG*B-129.78921*D
       ZCAL3=366.40674-15.517444*PLOG-647.42436*SDLOG+.18701758*A+18.0403
                                                                               D 270
      183*PLOG*SRLOG+379.59834*8-.00087958438*C-.105801*0*A#9PLOG-5.18882
                                                                               D 280
```

```
254 #PL OG#B-73.504269#D
                                                                                 D 581
       ZCAL4=516.07331-16.59277*PLOG-808.49823*SPLOG+.071256235*A+16.5248
                                                                                   202
      113*PLOG*SRLNG+418.45341*P+.00094183347*C-.019727817*A*SPLNG-3.8848
                                                                                 Þ
                                                                                   223
      2906*PL0G*8-71.038921*D
                                                                                 P
                                                                                   284
       IF (XZ121-40+) 62+65+65
                                                                                   205
62
       IF (XZ121+40+) 63+64+64
                                                                                 P 286
63
       TZ12=1.
                                                                                 P 287
       GO TO 66
                                                                                 Ð
                                                                                   288
64
       T712=1./(1.+FXP(X7121))
                                                                                 P
                                                                                   280
       GO TO 66
                                                                                 O
                                                                                   200
65
       TZ12=0.0
                                                                                   201
                                                                                 0
       IF (XZ231-40.) 67.70.70
66
                                                                                 D
                                                                                   202
67
       IF (XZ231+40+) 68+69+69
                                                                                 D
                                                                                   203
6B
       T723=1
                                                                                 P 204
       GO TO 71
                                                                                 D
                                                                                   20=
69
       TZ23=1./(1.+FXP(XZ231))
                                                                                   204
      GO TO 71
TZ23=0.0
                                                                                 Ð
                                                                                   207
70
                                                                                 D
                                                                                   298
71
       IF (xZ341-40.) 72.75.75
                                                                                 Þ
                                                                                   299
72
       IF (XZ341+40+) 73+74+74
                                                                                 D
                                                                                   300
       TZ34=1 •
73
                                                                                   301
       GO TO 76
                                                                                   302
74
      TZ34=1 • / (1 • + EXP (XZ341))
                                                                                 P 363
      GO TO 76
                                                                                 P RAA
75
      TZ34=0.0
                                                                                 P 305
76
       IF (XZ451-40.) 77.80.80
                                                                                 306
       IF (XZ451+40+) 78+79+79
77
                                                                                 Þ
                                                                                   307
78
      T745=1.
                                                                                 P
                                                                                   308
       GO TO 81
                                                                                 Þ
                                                                                   309
79
       TZ45=1./(1.+EXP(XZ451))
                                                                                  A to
      GO TO 81
                                                                                 P 311
80
      TZ45=0.0
                                                                                 D 312
81
      ZCAL=1.0+(ZCAL2-1.)*TZ12+(ZCAL3-ZCAL2)*TZ23+(ZCAL4-ZCAL3)*TZ34+(4.
                                                                                 Þ
                                                                                   313
      10-2CAL4)*TZ45
                                                                                 0
                                                                                   314
      ZCAL=1.+(ZCAL-1.)*TIS
                                                                                 D
                                                                                   315
      Z=ZCAL
                                                                                  316
                                                                                 P
C
                                                                                   317
C
          COMPUTING TIDES KY
                                                                                 P 318
r
                                                                                 0
                                                                                   319
       IF (K.FQ.2.0R.K.FQ.4) GO TO 82
                                                                                 ø
                                                                                   320
      IF (K.EQ.5) GO TO 82
                                                                                 P
                                                                                   321
      RHO=RHOA
                                                                                 Р
                                                                                  322
82
      TA = P*WO/(RHO*RUN1V*Z)
                                                                                 P
                                                                                  323
      IF (K+FQ+5) GO TO 1
                                                                                 P
                                                                                  324
      T = TA
                                                                                 D
                                                                                   325
C
                                                                                   326
                                                                                 P
C
          COMPUTING A(M/SEC)
                                                                                   327
¢
                                                                                P
                                                                                   328
83
      IF (T-2100.) 84.84.87
                                                                                   329
                                                                                D
RA.
         (T-1500+) 86+86+85
                                                                                ò
                                                                                   320
      IF (PLOG+1+) 87+87+86
85
                                                                                   771
86
      CON1=SQRT(T/273-15)
                                                                                D 332
      A0A0=-.0753808+CON!*(1.12644-.0552696*CON!)
                                                                                D 333
      AM=331.5#AOAO
                                                                                Þ
                                                                                   774
      GO TO 108
                                                                                0
                                                                                   275
      XA12=635+054-1220+46*SRL0G+803+882*8-180+845*0
87
                                                                                   336
                                                                                D
      XA23=373.702+663.358*$RL06+408.854*8-86.8056*D
                                                                                   337
      XA34=1703.78-2602.97*SRL0G+1337.93*9-231.422*D
                                                                                D 338
      XA22=1043.37-1820.34*SRL0G+1076.36*8-215.445*0
                                                                                D 330
      XA121=-10.*(PLOG-XA12)
                                                                                   240
                                                                                5
      XA231=-10.*(PL0G-XA23)
                                                                                   741
      XA341=-10.*(PLOG-XA34)
                                                                                   342
                                                                                D
      XA221=-10.*(PLOG-X422)
                                                                                0 747
      A1=-4409.6241+196.82259*PLOG+8746.4634*SRLOG-3.1650299*1-262.32947
                                                                                D 744
     1*PLOG*$RLOG-5786.449*E+.020004186*C+2.1429R25*A*5RLOG+R7.589029*DL
```

```
D 346
     20G#H+1277.6718#D
      A21=-1814.5117+86.096078*PLOG+3315.6099*SRLOG-1.7593034*A-107.2534
                                                                                 P 747
     1*PLOG*SRLOG-2023.201#8+.016287679#C+1.1398134#A#SRLOG+37.659667#PL
                                                                                 D
                                                                                   348
                                                                                   740
                                                                                 0
     20G*B+413.41945*D
      A22=2651.2944-81.405596*PLOG-3099.0064*5PLOG+.69752668*A+48.062596
                                                                                 D 350
                                                                                 D 351
     1*PLOG*SRLOG+907*70889#8
                                                                                 ロ マベン
      IF (XA221-40.) 89.88.88
                                                                                 0
                                                                                   35.3
88
      TA22=0.0
                                                                                 0
      GO TO 92
                                                                                   355
                                                                                 p
89
      IF (XA221+40.) 90.90.91
                                                                                   756
                                                                                 0
90
      TA22=1.0
                                                                                   357
                                                                                 0
      GO TO 92
                                                                                   750
91
      TA22=1 0/(1 0+FXP(XA221))
                                                                                 P 350
92
      A2=A21+(A22-A21)*TA22
      A3=-3217.8037+195.34964*PLOG+5348.2143*SRLOG-4.6268475#4-221.12705
                                                                                 D 360
                                                                                   361
     1*PLOG*SRLOG-2970。8649#8+。044614358#C+2。7079177#A#SRLOG+63。042803#P
                                                                                 D 362
     2L0G#8+553.12007#D
      A4=16976.939-476.10242*PLOG-17445.315*SRLOG+3.6534057*A+246.41125*
                                                                                 D 343
                                                                                 0 364
     1PL0G#SRL0G+4486+3119*9
                                                                                 D 765
      IF (XA121-40.) 94.93.93
                                                                                   366
                                                                                 0
93
      TA12=0.0
                                                                                   747
                                                                                 D
      GO TO 97
                                                                                    368
                                                                                 D
      IF (XA121+40a) 95.95.96
94
                                                                                 o
                                                                                   240
95
      TA12=1.0
                                                                                   270
                                                                                 D
      GO TO 97
                                                                                 P
                                                                                   371
      TA12=1./(1.+EXP(XA121))
96
                                                                                 D 372
      IF (XA231-40.) 99.98.98
97
                                                                                 D 373
98
      0.0=ESAT
                                                                                 0
                                                                                    774
      GO TO 102
                                                                                    375
      IF (XA231+40°) 100°100°101
99
                                                                                 ø
                                                                                   376
      TA23=1 .0
100
                                                                                   マフフ
                                                                                 GO TO 102
                                                                                   270
      TA23=1./(1.+EXP(XA231))
101
                                                                                 D 370
102
       IF (XA341-40a) 104.103.103
                                                                                   780
                                                                                 0
103
      TA34=0.0
                                                                                 D
                                                                                    381
      GO TO 107
                                                                                    362
       IF (XA341+40°) 105°105°106
104
                                                                                    303
                                                                                 .
105
       TA34=1 a 0
                                                                                   724
                                                                                 O
      GO TO 107
                                                                                   30E
      TA34=10/(10+FXP(XA341))
A0A0=A(+(A2-A1)*TA12+(A3-A2)*TA23+(A4-A3)*T534
                                                                                 0
106
                                                                                   706
                                                                                 \Box
107
                                                                                 0
                                                                                   707
       AM=331.3115*ADAO
                                                                                 0 388
C
                                                                                 0 300
c
          COMPUTING GAME
                                                                                 m
                                                                                   300
C
                                                                                 D 301
      GAME=WO#AM##2/(RUN1V#Z#T)
108
                                                                                 D
                                                                                    202
       IF (K.EQ.2) GO TO 109
                                                                                    303
       JF (K.FQ.3.0R.K.FQ.4) GO TO 110
                                                                                 D
                                                                                  D 304
       IF (K.EQ.5) GO TO 110
                                                                                 0 395
       H=HA
                                                                                  D 396
       GO TO 110
                                                                                  P 707
109
       H=HA
                                                                                  D ROP
110
       RETURN
                                                                                  D 300
C
                                                                                    ann-
       SUBROUTINE INTRP (N.X.Y.XINT.YINT)
                                                                                  O
                                                                                      1
                                                                                      2
       DIMENSION X(N) . Y(N)
                                                                                  Ω
                                                                                  0
       YINT=0.
                                                                                  O
                                                                                      Δ
       DO 3 1=1 .N
                                                                                  \circ
                                                                                      =
       SUMN=1 .
                                                                                      4
                                                                                  0
       SUMD=1 0
                                                                                  O
       DO 2 J=1.N
                                                                                  0
                                                                                      Ω
       IF (J-I) 1.2.1
                                                                                      q
       SUMN=SUMN# (XINT-X(J))
                                                                                  0
                                                                                     10
                                                                                  0
       SUMD=SUMD#(X(I)-X(J))
                                                                                     1 1
2
       CONTINUE
```

```
3
       YINT=YINT+Y(1)*SUMN/SUMD
                                                                                 O
                                                                                    12
      RETURN
                                                                                 \circ
                                                                                    13
      END
                                                                                 O
                                                                                    14-
       SUBROUTINE SC (R21.UI.PI.HI.R11.US.P.H.ISAV)
                                                                                 O
                                                                                     ţ
      COMMON /BLK4/ LF+NON+LU+NDRIV+LB+LD+LG
                                                                                 Þ
                                                                                     2
      COMMON /BLK5/ SR.TII.AI.71.GI.K.P2.1SP
                                                                                 D
      R21=10.*R11
                                                                                 D
                                                                                     Δ
      IF (LB.EQ.1) GO TO 5
                                                                                 CALL SHOCK (B.C.D.RIT.US.D.H)
                                                                                 Ð
                                                                                     4
      UI=US*(1.-R11/R21)
                                                                                 R
      PI=C-(R2]*(US-UI)**2)
                                                                                 D
                                                                                     я
      HI=D-.5*(US-UI)**2
                                                                                 b
                                                                                     0
      IF (L8.E0.2) GO TO 3
                                                                                 Þ
                                                                                    10
      GO TO (2.3). ISAV
                                                                                 D
                                                                                    1 1
2
      CALL SEARCH (PIARMEWAHIASRATIIAAIAZIAGIAZSTA1SP)
                                                                                 Þ
                                                                                    12
      GO TO 4
                                                                                 Ð
                                                                                    13
3
      CALL SAVE (PI.RNEW.HI.SR.TII.AI.ZI.GI.3)
                                                                                 Q
                                                                                    14
      IF (ABS(1.-RNEW/R21).LF..no1) GO TO 9
ά
                                                                                 D
                                                                                    15
      R21=RNFW
                                                                                 D
                                                                                    16
      GO TO 1
                                                                                 D
                                                                                    17
5
      US=SORT((PI-P)/(R11*(I.-R11/R2I)))
                                                                                 D
                                                                                    1.8
      UI=US*(1.-R11/R21)
                                                                                 Q
                                                                                    10
      HI=H++5*(US##2+(US+U])##2)
                                                                                 D
                                                                                    20
      GO TO (6.7). ISAV
                                                                                 Þ
                                                                                    21
      CALL SFARCH (PI-RNEW-HI-SP-TII-AI-71-GI-ZSI-ISP)
6
                                                                                 Þ
                                                                                    22
      GO TO 8
                                                                                 D
                                                                                    23
      CALL SAVE (PI.RNEW.HI.SR.TII.AI.71.GI.3)
7
                                                                                 o
                                                                                    24
В
      IF (ABS(1.-RNEW/R21).LF.. not) GO TO 0
                                                                                 ₽
                                                                                    25
      R21=RNEW
                                                                                 Ф
                                                                                    26
      GO TO 5
                                                                                 D
                                                                                    27
9
      RETURN
                                                                                 D
                                                                                    28
      END
                                                                                 ₽
                                                                                    29_
      SUBROUTINE SOLUT (U3.P3.H2.P2.M.N.HR.D)
                                                                                     1
      DIMENSION U3(20), P3(20), U2(10), P2(10), U(2)
                                                                                 c
                                                                                     2
      FUNCO (PP+UU+R)=PP+HU*Q
                                                                                 <
      FUNAR (P+PP+U+UU) = (P-PP)/(H-UU)
                                                                                 <
                                                                                     Δ
                                                                                 <
                                                                                     _
C
      USF END POINTS FOR FIRST INTERSECTION
                                                                                 <
                                                                                     6
C
                                                                                 ς
      MD=1
                                                                                     а
      NP=1
                                                                                 c
                                                                                     0
      IF (P2(1) .GT .P2(2)) NR=-NR
                                                                                    ţΛ
                                                                                 S
      IF (P3(1).GT.P3(2)) MP=-MR
                                                                                 ς
                                                                                    1 1
      P31=P3(1)
                                                                                 ς
                                                                                    12
      P32=P3(M)
                                                                                 <
                                                                                    12
      P21=P2(1)
                                                                                    14
      P22=02(N)
                                                                                 Ç
                                                                                    1=
      U21=U2(1)
                                                                                 c
                                                                                    1 4
      U22=U2(N)
                                                                                C
                                                                                    17
      U31=U3(1)
                                                                                    18
                                                                                ς
      U32=U3(M)
                                                                                    10
                                                                                <
      AA=FUNAP (P22.021.1122.1121)
1
                                                                                ¢
                                                                                   20
      BB=FUNAB(P32+P31+U32+U31)
                                                                                c
                                                                                   21
      CC=FUNCD(P21+U21+AA)
                                                                                ς,
                                                                                   22
      DD=FUNCD(P31+U31+BR)
                                                                                <
                                                                                   23
      UR=(CC-DD)/(BB-AA)
                                                                                ς
                                                                                   24
      PR=CC+UR*AA
                                                                                <
                                                                                   25
      CALL FTLUP (PR,U(1)+NR+N+P2+U2)
                                                                                ς
                                                                                   26
      CALL FILUP (PR.U(2) MR.M.P3.U3)
                                                                                   27
                                                                                <
      IF (ABSC(U(11-U(2))/U(1))-.0001) 3.3.2
                                                                                ς
                                                                                   28
      P31=P32
                                                                                   29
```

```
30
      P32=PR
      P21=P22
                                                                                    ٦,
                                                                                 c
                                                                                    22
      P22=PR
                                                                                 ς
                                                                                    77
      U31=U32
                                                                                 ς
      U32=U(2)
                                                                                    74
                                                                                    35
                                                                                 ς
      U21=U22
                                                                                    36
      U22=U(1)
                                                                                 ς
                                                                                    27
      GO TO 1
3
      PEPP
                                                                                 c
                                                                                    28
                                                                                 c
                                                                                     30
      RETURN
      END
                                                                                    40-
-0.0
L.E.T. PROGRAM FOR EQUILIBRIUM REAL AIR.
 $INP_RUN=441.pP1=3447.5.US1=2865.US=5500.[REP=1.0FLU5=3308
$INP RUN=86.P1=6895.US1=4300.US=7500.1REP=1.DFLUS=5004
```

Sample data printouts for representative tests in the Langley 6-inch expansion tube with unheated and arc-heated helium driver gases are presented on the following pages. In most instances, the headings for various flow regions correspond to those in the section entitled "Symbols." Exceptions are UI, which denotes either the test-air—drivergas interface velocity or acceleration-air—test-air interface velocity, RATIO, which denotes the ratio of density immediately behind an incident or standing shock to freestream density, and labels ending in T (under heading "Shock Tube Flow Parameters Using Mirels Theory") which denote turbulent flow quantities. The sample printouts are as follows:

Unheated Helium Driver Gas

```
06/19/76
L.E.T. PROGRAM FOR EQUILIBRIUM REAL AIR
EXPANSION TUBE PROGRAM OF MILLER FOR REAL AIR
ALL PHYSICAL QUANTITIES IN MKS UNITS- NASA SP-7012
SHOCK TUBE PHASE OF PROGRAM
MEASURED INPUTS FOR SHOCK TUBE PHASE
                          USI
                                                                     DIA
4.410E+02 3.447E+03 3.000E+02 2.865E+03 0.
                                                          4.650F+00 1.524E-01
CONDITIONS BEHIND INCIDENT SHOCK - REGION 2
S/R
                                                   GAME
2.895E+05 3.087E-01 3.175E+03 4.336E+06 3.302E+01 1.029E+00 1.151E+00 1.039E+03 2.493E+03 2.400E+00 8.604F+06
RATIO- 2 TO 1 CONDITIONS AND SHOCK VELOCITY
```

P RHO T H A MS1 US1 8.396E+01 7.710E+00 1.058E+01 1.443E+01 2.992E+00 8.252E+00 2.865E+03

SHOCK TUBE FLOW PARAMETERS USING MIRELS THEORY

LMAX L L/LMAX TIM UT LMAXT LT LT/LMAXT TIMT. UIT TIMT 7.324E+01 5.675E-01 7.748E-03 2.245E-04 2.527E+03 1.030E+00 4.235E-01 4.111E-01 1.580E-04 2.681E+03 2.419E-04

EXPANSION TUBE PHASE OF PROGRAM

INPUTS FOR EXPANSION TUBE PHASE

U5 P5 XAS DELU5 ISAV IEXP IREP NVEL IAC JAC 5.500E+03 0. 1.698E+01 3.300E+02 2 1 1 8 50 50

5 CONDITIONS FOR FROZEN EXPANSION

P RHO T H S/R & GAME A U M NRE 1.481E+03 7.307E-03 6.850E+02 6.979E+05 3.302E+01 1.029E+00 1.409E+00 5.345E+02 5.500E+03 1.029E+01 1.221E+06

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 5S FROZEN EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H S/R Z GAME A U M PATTO 2.027E+05 8.157E-02 6.398E+03 1.681E+07 4.243E+01 1.353E+00 1.144E+00 1.686E+03 4.924E+02 2.921E-01 1.116E+01

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS FROZEN EXPANSION--EQUILIBRIUM POST SHOCK

P RHD T H Z GAME A QT RN TIME 2-128E+05 8-510E-02 6-427E+03 1-693E+07 1-356E+00 1-144E+00 1-691E+03 1-867E+07 2-540E-02 3-323E-04

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 5S FROZEN EXPANSION-- FROZEN POST SHOCK

P RHO T H S/R Z GAME A U M RATIC 1.832E+05 4.111E-02 1.509E+04 1.535E+07 3.885E+01 1.029E+00 1.409E+00 2.506E+03 9.775E+02 3.900E-01 5.626E+00

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TO FROZEN EXPANSION-+ FROZEN POST SHOCK

P RHO T H Z GAME A QT RV TIMI 2.036E+05 4.4315-02 1.555E+04 1.582E+07 1.029E+00 1.409E+00 2.545E+03 1.705E+07 2.540E-02 3.323E-04

AEDC REAL-AIR TAPE USED FOR UNSTEADY EXPANSION-IEXP=1

5 CONDITIONS FOR EQUILIBRIUM EXPANSION

P R40 T H S/R Z GAME A U M NRE 4.457E+03 1.060E-02 1.466E+03 1.596E+06 3.302E+01 1.000E+00 1.306E+00 7.410E+02 5.500E+03 7.423E+00 1.122E+06

STATIC CONDITIONS BEHIND BON SHOCK - REGION 55 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H S/R Z GAME A U M RATTD

2-964E+05 1-186E-01 6-484E+03 1-660E+07 4-180E+01 1-342E+00 1-147E+00 1-693E+03 4-910E+02 2-900E-01 1-120E+01

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H . Z GAME A QT RN TIME 3-110E+05 1-237E-01 6-514E+03 1-672E+07 1-345E+00 1-147E+00 1-698E+03 2-229E+07 2-540E-02 4-807E-04

FOLLOWING EQUILIBRIUM CONDITIONS INCLUDE FLOW ATTN

```
5 CONDITIONS FOR EQUILIBRIUM EXPANSION
P RHO T H S/R Z GAME A U M MRE
4-457E+03 1-060E-02 1-464E+03 1-596E+06 3-302F+01 1-000E+00 1-306E+00 7-410E+02 4-840E+03 6-532E+00 9-870E+05
STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK
                                                                                                                                   GAME
                                                                                         S/R
2.282E+05 1-074E-01 5.855E+03 1.319E+07 4-019E+01 L.264E+00 1.163E+00 1.572E+03 4.775E+02 3.038E-01 1.013E+01
STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TO
EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK
                                                                                                              GAME
2.407E+05 1.124E-01 5.890E+03 1.331E+07 1.266E+00 1.162E+00 1.578E+03 1.553E+07 2.540E-02 6.342E-04
 ACCELERATION AIR CONDITIONS (REGION 20) AND P10
 P20 RHD20 T20 H20 Z20 M20 P10 US10 MS10 RATIO
4.457E+03 1.986E-03 5.493E+03 1.767E+07 1.423E+00 3.477E+00 1.178E+01 5.908E+03 1.702E+01 1.452E+01
 ACCELERATION AIR FLOW PARAMETERS USING MIRELS THEORY
                                                                                                                                                                             U520/UI
                                                                                                                 TIM
                                                                                            1 /1 MAX
 1.698E+01 1.698E+00 2.038E-01 6.847E-02 3.359E-01 1.193E-05 5.738E+03 1.043E+00 1.030E+00 2.127E-05
1.698E+01 1.698E+00 2.038E-01 6.847E-02 3.359E-01 1.193E-05 5.738E+03 1.043E+00 1.030E+00 2.127E-05 1.698E+01 3.396E+00 2.038E-01 1.080E-01 5.299E+01 1.863E-05 5.798E+03 1.054E+00 1.019E+00 4.253E-05 1.698E+01 5.094E+00 2.038E-01 1.345E-01 6.599E-01 2.306E-05 5.832E+03 1.060E+00 1.013E+00 6.380E-05 1.698E+01 6.79ZE+00 2.038E-01 1.531E-01 7.509E-01 2.615E-05 5.854E+03 1.064E+00 1.009E+00 8.507E-05 1.698E+01 8.490E+00 2.038E-01 1.664E-01 8.163E-01 2.835E-05 5.869E+03 1.067E+00 1.007E+00 1.063E-04 1.698E+01 1.019E+01 2.038E-01 1.761E-01 8.638E-01 2.995E-05 5.880E+03 1.069E+00 1.007E+00 1.276E-04 1.698E+01 1.889E+01 2.038E-01 1.832E-01 8.987E-01 3.112E-05 5.887E+03 1.070E+00 1.006E+00 1.689E-04 1.889E+01 2.038E-01 1.889E-01 2.038E-01 1.889E-01 2.038E-01 1.889E-01 2.038E-01 1.889E-01 2.038E-01 1.889E-01 1.889E
 1.698E+01 1.358E+01 2.038E-01 1.884E-01 9.245E-01 3.198E-05 5.892E+03 1.071E+00 1.003E+00 1.701E-04 1.698E+01 1.528E+01 2.038E-01 1.923E-01 9.245E-01 3.262E-05 5.896E+03 1.072E+00 1.002E+00 1.914E-04 1.698E+01 1.698E+01 2.038E-01 1.952E-01 9.578E-01 3.310E-05 5.899E+03 1.073E+00 1.001E+00 2.127E-04
CONDITIONS BEHIND STANDING SHOCK AT SECONDARY DIAPH
 P RHO T H S/R Z GAME A U M NRE
1.751E+06 1.294E+00 4.307E+03 7.267E+06 3.380E+01 1.094E+00 1.201E+00 1.275E+03 5.946E+02 4.665E-01 6.781E+06
  EXPANSION TUBE PHASE OF PROGRAM
  INPUTS FOR EXPANSION TUBE PHASE
                                                                                       ISAV TEXP TREP NVEL TAG JAC
                                                  XAS
                                                                       DEL U5
 5.500E+03 0.
                                        1.698E+01 3.300E+02
 5 CONDITIONS FOR FROZEN EXPANSION
 P RMO T H S/R Z GAME A U M NRE
1.400E+02 1.762E-03 2.529E+02 2.643E+05 3.380E+01 1.094E+00 1.430E+00 3.370E+02 5.500E+03 1.632E+01 6.015E+05
  STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55
  FROZEN EXPANSION--EQUILIBRIUM POST SHOCK
  p RHO T H S/R Z GAME A U M RATID
4.868E+04 1.972E-02 6.122E+03 1.803E+07 4.512E+01 1.405E+00 1.31E+00 1.671E+03 4.913E+02 2.941E-01 1.119E+01
```

P RHO T H Z GAME A QT RN TÎMÎ 5.111E+04 2.058E-02 6.146E+03 1.815E+07 1.408E+00 1.13E+00 1.676E+03 9.826E+06 2.540E-02 2.015E-04

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS FROZEN EXPANSION--EQUILIBRIUM POST SHOCK

```
STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55
 FROZEN EXPANSION-- FROZEN POST SHOCK
 P RHO T H S/R Z GAME A U M RATID
4-385E+04 9-794E-03 1-426E+04 1-490E+07 4-147E+01 1-094E+00 1-430E+00 2-530E+03 9-896E+02 3-911E-01 5-558E+00
 STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS
 FROZEN EXPANSION-- FROZEN POST SHOCK
P RHO T H Z GAME A QT RN TIMI
4-883E+04 1-056E-02 1-472E+04 1-539E+07 1-094E+00 1-430E+00 2-571E+03 8-117E+06 2-540E-02 2-015E-04
 AEDC REAL-AIR TAPE USED FOR UNSTEADY EXPANSION-[EXP=1
5 CONDITIONS FOR EQUILIBRIUM EXPANSION
                                                                                              GAME
6.052E+03 1.126E-02 1.870E+03 2.111E+06 3.380E+01 1.000E+00 1.278E+00 8.284E+02 5.500E+03 6.639E+00 1.002E+06
STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55
 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK
P RHO T H S/R Z GAME A U M RATTO 3-156E+05 1-236E-01 6-571E+03 1-711E+07 4-200E+01 1-354E+00 1-147E+00 1-711E+03 5-009E+02 2-927E-01 1-097E+01
 STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS
EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK
                                                                              GAME
3.315E+05 1.289E-01 6.60ZE+03 1.725E+07 1.357E+00 1.147E+00 1.717E+03 2.375E+07 2.540E-02 5.475E-04
FOLLOWING EQUILIBRIUM CONDITIONS INCLUDE FLOW ATTN
5 CONDITIONS FOR EQUILIBRIUM EXPANSION
                                                                                              GAME
5.052E+03 1.126E-02 1.870E+03 2.111E+06 3.380E+01 1.000E+00 1.278E+00 8.284E+02 4.840E+03 5.842E+00 8.817E+05
STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55
EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK
P RHO T H S/R Z GAME A U M RATEO 2.431E+05 1-113E-01 5.969E+03 1.370E+07 4.041E+01 1.275E+00 1.160E+00 1.592E+03 4.897E+02 3.077E-01 9.882E+00
 STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TO
 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK
                                                                               GAME
2.568E+05 1.166E-01 6.005E+03 1.382E+07 L.277E+00 1.159E+00 1.598E+03 1.668E+07 2.540E+02 7.245E-04
ACCELERATION AIR CONDITIONS (REGION 20) AND PIO
                 R4020
                                  T20
                                               H20
                                                               720
                                                                                M20
                                                                                               P10
                                                                                                             US10
                                                                                                                            MS10
                                                                                                                                            RATIO
 6.052E+03 2.667E-03 5.565E+03 1.769E+07 1.421E+00 3.455E+00 1.599E+01 5.912E+03 1.703E+01 1.436E+01
ACCELERATION AIR FLOW PARAMETERS USING MIRELS THEORY
XAS XA LMAX L L/LMAX TIM UI UI/U5 US20/UI TIMI
1.698E+01 1.698E+00 2.765E-01 7.471E-02 2.702E-01 1.307E-05 5.717E+03 1.039E+00 1.034E+00 2.149E-05
1.698E+01 3.396E+00 2.765E-01 1.221E-01 4.414E-01 2.113E-05 5.776E+03 1.050E+00 1.024E+00 4.298E-05
1.698E+01 5.094E+00 2.765E-01 1.562E-01 5.649E-01 2.688E-05 5.812E+03 1.057E+00 1.017E+00 6.448E-05
1.698E+01 6.792E+00 2.765E-01 1.819E-01 6.577E-01 3.116E-05 5.836E+03 1.061E+00 1.013E+00 8.597E-05
1.698E+01 8.490E+00 2.765E-01 2.016E-01 7.289E-01 3.444E-05 5.853E+03 1.064E+00 1.010E+00 1.075E-04
1.698E+01 1.019E+01 2.765E-01 2.169E-01 7.843E-01 3.697E-05 5.866E+03 1.067E+00 1.008E+00 1.290E-04
1.698E+01 1.358E+01 2.765E-01 2.289E-01 8.278E-01 3.896E-05 5.876E+03 1.068E+00 1.006E+00 1.504E-04
1.698E+01 1.358E+01 2.765E-01 2.384E-01 8.622E-01 4.052E-05 5.883E+03 1.071E+00 1.005E+00 1.719E-04
1.698E+01 1.528E+01 2.765E-01 2.460E-01 8.895E-01 4.176E-05 5.889E+03 1.071E+00 1.005E+00 1.719E-04
1.698E+01 1.698E+01 2.765E-01 2.520E-01 9.112E-01 4.275E-05 5.894E+03 1.072E+00 1.003E+00 2.149E-04
```

CONDITIONS BEHIND REFLECTED SHOCK AT SECONDARY DIAPH

P RHD T H 5/R Z GAME A U M NRE 2.6554E+06 1.639E+00 4.984E+03 8.887E+06 3.451E+01 1.132E+00 1.225E+00 1.408E+03 0. O. O.

EXPANSION TUBE PHASE OF PROGRAM

INPUTS FOR EXPANSION TUBE PHASE

U5 P5 KAS DELU5 ISAV IEXP TREP NVEL 1AC JAC 5.500E+03 0. 1.698E+01 3.300E+02 2 1 1 8 5.0 50

5 CONDITIONS FOR FROZEN EXPANSION

P RHO T H S/R Z GAME A U M NRE 8.689E+01 1.266E-03 2.112E+02 2.242E+05 3.451E+01 1.132E+00 1.441E+00 3.145E+02 5.500E+03 1.749E+01 5.016E+05

STATIC CONDITIONS BEHIND BOH SHOCK - REGION 5S FROZEN EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H S/R Z GAME A U M RATIO 3-491E+04 L-394E-02 6.097E+03 1.882E+07 4.605E+01 1.431E+00 1.127E+00 1.680E+03 4.991E+02 2.971E-01 1.101E+01

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS FROZEN EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H Z GAME A OT RY TIMI 3.669E+04 1.457E-02 6.120E+03 1.895E+07 1.433E+00 1.128E+00 1.685E+03 8.694E+06 2.540E-02 1.872E-04

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 5S FROZEN EXPANSION-- FROZEN POST SHOCK

P RHO Ť H S/R Z GAME A U M RATID 3.137E+04 6.906E-03 1.398E+04 1.684E+07 4.232E+01 1.132E+00 1.441E+00 2.559E+03 1.009E+03 3.942E-01 5.453E+00

STAGNATION CONDITIONS BEHIND BOH SHOCK-REGION TS FROZEN EXPANSION— FROZEN POST SHOCK

P RHO T H Z GAME A QT RN TIMI 3.502E+04 7.452E-03 1.446E+04 1.535E+07 1.132E+00 1.441E+00 2.60ZE+03 6.855E+06 2.540E-02 1.872E-04

AEDC REAL-AIR TAPE USED FOR UNSTEADY EXPANSION-TEXP=1

5 CONDITIONS FOR EQUILIBRIUM EXPANSION

P RHO T H S/R Z GAME A U H NRE 7.729E+03 L.188E-02 2.256E+03 2.676E+06 3.451E+01 1.003E+00 1.225E+00 8.925E+02 5.500E+03 6.163E+00 9.309E+05

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H S/R Z GAME A U M RATTO
3-338E+05 L-278E-01 6-656E+03 1-767E+07 4-222E+01 1-367E+00 1-146E+00 1-730E+03 5-111E+02 2-954E+01 1-075E+01

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H Z GAME A OT RN TIMI 3.508E+05 1.334E-01 6.688E+03 1.780E+07 1.370E+00 1.146E+00 1.736E+03 2.523E+07 2.540E-02 5.980E-04

FOLLOWING EQUILIBRIUM CONDITIONS INCLUDE FLOW ATTN

5 CONDITIONS FOR EQUILIBRIUM EXPANSION

P RHO T H S/R Z GAME A U M VRE 7-729E+03 1.188E-02 2.256E+03 2.676E+06 3.451E+01 1.003E+00 1.225E+00 8.925E+02 4.840E+03 5.423E+00 8.192E+05

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 5S EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H S/R Z GAME A U M RATTO 2.571E+05 1.143E-01 6.085E+03 1.426E+07 4.067E+01 1.288E+00 1.156E+00 1.613E+03 5.029E+02 3.118E-01 9.623E+00

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H Z GAME A OT RN TIMT 2-720E+05 1-200E-01 6-121E+03 1-439E+07 1-290E+00 1-156E+00 1-619E+03 1-788E+07 2-540E-02 7-932E-04

ACCELERATION AIR CONDITIONS (REGION 20) AND PIO P20 RH020 T20 H20 Z20 M20 PIO USIO M510 RATIO 7.729E+03 3.375E-03 5.623E+03 1.772E+07 L.419E+00 3.437E+00 2.040E+01 5.916E+03 1.704E+01 1.424E+01

ACCELERATION AIR FLOW PARAMETERS USING MIRELS THEORY

XAS	XA		L	L/LMAX	TIM	UI	BT / B5	US20/U1	TIMI
1.698E+01	1.6986+00	3.529E-01	7.9456-02	2.251F+01	1.3946-05	5. TODEADS	1 0345400	1 0100.00	3 1475 05
T * 0.40£ +0.1	J. 346E+UU	3.5.9E-UL	L-330E-01	3.7695-01	2.310F-05	5.758E+03	1 0475400	1 0305400	
1 * 0 4 0 5 4 0 1	J.U94E+UU	3.5296-01	1.735E-01	4.916E~01	2-995F-05	5.794F+03	1.0536+00	1 0215400	£ 6035-06
1 * 0 A 0 C + O I	0.1925+00	3.529E-01	2.053E-01	5-817F-01	3_528F-05	5_8195+03	1.0585400	1 0175400	0 4705 05
1.0496.401	8-4406+00	3.529E-01	2 - 30 7E-01	6-537E-01	3-9526-05	5. 838F+03	1 0616400	1 0125400	1 00/5 0/
1.04BE+01	1.019E+01	3.529E-01	2.513F-01	7-122F-01	4.205E-05	5 053C+03	1 0445.00		
TOO AGE AGE	141075701	3.3275-01	2.0071-01	/ - 600 F=0 1	4.6746-05	5 8446403	1 0445404		
*****	*****	フェンムフローひょ	2 × 0 Z 1E = 11 I	7.446F-(II	A HOAE-OK	E D13C103	1 0405.00		
*********	1-7605101	3.7275-01	2. Y30E-UI	8.320F-01	4_997F-N5	S BBAETUS	1 0405.00	1 00/5.00	
L-698E+01	1-698E+01	3.529E-01	3-032E-01	8.591E-01	5.151E-05	5.886E+03	1.070E+00	1.005E+00	2.167E-04

Arc-Heated Helium Driver Gas

06/19/74

L.E.T. PROGRAM FOR EQUILIBRIUM REAL AIR

EXPANSION TUBE PROGRAM OF MILLER FOR REAL AIR ALL PHYSICAL QUANTITIES IN MKS UNITS- NASA SP-7012

SHOCK TUBE PHASE OF PROGRAM

MEASURED INPUTS FOR SHOCK TUBE PHASE

RUN P1 T1 US1 P2 P4 T4 X1S DIA ISAV INU LD B.600E+01 6.895E+03 3.000E+02 4.300E+03 0. 0. 0. 4.650E+00 1.524E-01 2 2 4

CONDITIONS BEHIND INCIDENT SHOCK - REGION 2

RHD T H S/R Z GAME A U M NRE 1.337E+06 7.865E-01 5.114E+03 9.450E+06 3.566E+01 1.158E+00 1.224E+00 1.442E+03 3.862E+03 2.678E+00 2.30ZE+07

RATIO- 2 TO 1 CONDITIONS AND SHOCK VELOCITY

P RHO T H A MS1 US1 1-939E+02 9-823E+00 1-705E+01 3-144E+01 4-154E+00 1-238E+01 4-300E+03

SHOCK TUBE FLOW PARAMETERS USING MIRELS THEORY

LMAX L L/LMAX TIM UI LMAXT LT LT/LMAXT TIMT UIT TIMI 1.210E+02 4.540E-01 3.753E-03 1.167E-04 3.890E+03 1.018E+00 3.523E-01 3.462E-01 8.689E-05 4.054E+03 1.226E-04

EXPANSION TUBE PHASE OF PROGRAM

INPUTS FOR EXPANSION TUBE PHASE

U5 P5 XAS DELUS ISAV IEXP TREP NVEL TAC JAC 7.500E+03 0. 1.698E+01 5.000E+02 2 1 1 8 50 50

5 CONDITIONS FOR FROZEN EXPANSION

P RHO T H S/R Z GAME A U " H NRE 1.165E+04 2.980E-02 1.177E+03 1.262E+06 3.566E+01 1.158E+00 1.449E+00 7.527E+02 7.500E+03 9.964E+00 4.882E+06

STATIC CONDITIONS BEHIND BOH SHOCK - REGION 5S FROZEN EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H S/R Z GAME A U H RATTO 1.550E+06 3.613E-01 8.740E+03 3.316E+07 4.68TE+01 1.710E+00 1.185E+00 2.254E+03 6.191E+02 2.746E-01 1.212E+01

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS

P RHO T H Z GAME A QT RN TIMI 1.620E+06 3.753E-01 8.783E+U3 3.336E+07 1.713E+00 L.186E+00 2.262E+03 1.024E+08 2.540E-02 2.526E-06

STATIC CONDITIONS BEHIND BOH SHOCK - REGION 5S FROZEN EXPANSION-- FROZEN POST SHOCK

P RHO T H S/R Z GAME A U M RATIO 1.367E+06 1.556E-01 2.664E+04 2.835E+07 4.094E+01 1.158E+00 1.449E+00 3.568E+03 1.437E+03 4.027E-01 5.220E+00

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TO FROZEN EXPANSION-- FROZEN POST SHOCK

P R40 T H Z GAME A QT RM TIMI 1.534E+06 1.685E-01 2.740E+04 2.939E+07 1.158E+00 1.449E+00 3.632E+03 8.770E+07 2.540E-02 2.526E-04

AEDC REAL-AIR TAPE USED FOR UNSTEADY EXPANSION-IEXP#L

5 CONDITIONS FOR EQUILIBRIUM EXPANSION

P R4D T H S/R Z GAME A U M NRE 4-177E+04 4-314E-02 3-184E+03 4-948E+06 3-566E+01 1-058E+00 1-157E+00 1-058E+03 7-500E+03 7-087E+00 3-597E+06

STATIC CONDITIONS BEHIND BOW SMOCK - REGION 55 EQUILIBRIUM EXPANSIOM--EQUILIBRIUM POST SMOCK

P R-IO T H S/R Z GAME A U H RATED

2.269E+06 5.264E-01 B.905E+03 3.288E+07 4.611E+01 1.693E+00 1.187E+00 2.266E+03 6.176E+02 2.726E-01 1.216E+01

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

p RHO T H Z GAME A QT RN TIMI 2.371E+06 5.444E-01 8.948E+03 3.308E+07 1.696E+00 1.187E+00 2.274E+03 1.228E+08 2.540E-02 3.719E-04

FOLLOWING EQUILIBRIUM CONDITIONS INCLUDE FLOW ATTN

5 CONDITIONS FOR EQUILIBRIUM EXPANSION

P RHO T H 5/R Z GAME A U M VRF 4-177E+04 4-314E-02 3-184E+03 4-948E+06 3-566E+01 1-058E+00 1-157E+00 1-058E+03 6-500E+03 6-142E+00 3-117E+06

STATIC CONDITIONS BEHIND BOH SHOCK - REGION 5S EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

```
P RHO T H S/R Z GAME A U M PATTO 1.699E+06 4.748E-01 B.107E+03 2.590E+07 4.375E+01 1.533E+00 L.167E+00 2.044E+03 5.903E+02 2.888E-01 1.100E+01
  STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TO
  EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK
  P RHO T H 7 GAME A QT RN TIMI
1.783E+06 4.950E-01 8.146E+03 2.608E+07 1.541E+00 1.168E+00 2.051E+03 8.379E+07 2.540E-02 5.080E-04
  ACCELERATION AIR CONDITIONS (REGION 20) AND PIO
  P20 RH020 T20 H20 Z20 M20 P10 US10 M510 RATIO
4.177E+04 1.156E-02 7.125E+03 3.206E+07 1.768E+00 3.668E+00 6.000E+01 7.984E+03 2.300E+01 1.658E+01
  ACCELERATION AIR FLOW PARAMETERS USING MIRELS THEORY
                                                                               TIM
 1.698E+01 1.698E+00 9.757E-01 8-203E-02 8-408E-02 1.073E-05 7.644E+03 1.019E+00 1.045E+00 1.365E-05
                                                                                             υī
                                                                                                           UI/U5
 1.698E+01 3.396E+00 9.757E-01 1.492E-01 1.529E-01 1.939E-05 7.693E+03 1.026E+00 1.038E+00 2.731E-05 1.698E+01 5.094E+00 9.757E-01 2.078E-01 2.129E-01 2.689E-05 7.727E+03 1.030E+00 1.033E+00 4.096E-05
 1.698E+01 5.094E+00 9.757E-01 2.078E-01 2.129E-01 2.689E-05 7.727E+03 1.030E+00 1.033E+00 4.096E-05 1.698E+01 6.792E+00 9.757E-01 2.660E-01 2.665E-01 3.353E-05 7.753E+03 1.034E+00 1.030E+00 5.461E-05 1.698E+01 8.490E+00 9.757E-01 3.072E-01 3.148E-01 3.951E-05 7.775E+03 1.037E+00 1.027E+00 6.827E-05 1.698E+01 1.019E+01 9.757E-01 3.501E-01 3.588E-01 4.493E-05 7.773E+03 1.039E+00 1.025E+00 8.192E-05 1.698E+01 1.189E+01 9.757E-01 3.895E-01 3.992E-01 4.93E-05 7.809E+03 1.041E+00 1.022E+00 9.557E-01 1.698E+01 1.356E+01 9.757E-01 4.257E-01 4.363E-01 5.442E-05 7.809E+03 1.043E+00 1.021E+00 1.092E-04 1.698E+01 1.528E+01 9.757E-01 4.591E-01 4.705E-01 5.860E-05 7.803E+03 1.045E+00 1.019E+00 1.229E-04 1.698E+01 1.698E+01 9.757E-01 4.901E-01 5.023E-01 6.247E-05 7.846E+03 1.046E+00 1.018E+00 1.365E-04
 CONDITIONS BEHIND STANDING SHOCK AT SECONDARY DIAPH
 P RHO T H S/R Z GAME A U M
1.062E+D7 3.761E+00 7.707E+03 1.658E+07 3.709E+01 1.276E+00 1.178E+00 1.824E+03 8.073E+02 4.427E-01 0.
 EXPANSION TUBE PHASE OF PROGRAM
 INPUTS FOR EXPANSION TUBE PHASE
                                                            ISAV IEXP IREP NVEL TAC JAC
                                  YAC
                                                OELU5
                             1.698E+01 5.000E+02
                                                                                     8
5 CONDITIONS FOR FROZEN EXPANSION
P RMO T H S/R Z GAME A U M NRE
7.181E+02 5.821E-03 3.368E+02 3.784E+05 3.709E+01 1.276E+00 1.484E+00 4.278E+02 7.500E+03 1.753E+01 2.168E+06
STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 FROZEN EXPANSION--EQUILIBRIUM POST SHOCK
P RHO T H S/R Z GAME A U M RATIO
3.006E+05 6.913E-02 8.327E+03 3.623E+07 5.100E+01 1.819E+00 1.176E+00 2.261E+03 6.310E+02 2.791E-01 1.188E+01
STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS
FROZEN EXPANSION--EQUILIBRIUM POST SHOCK
P RHO T H Z GAME A OT RN TIMI
3.146E+05 7.185E-02 8.371E+03 3.642E+07 1.822E+00 1.176E+00 2.269E+03 4.933E+07 2.540E-02 1.370E-04
STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 FROZEN EXPANSION-- FROZEN POST SHOCK
P RHD T H 5/R Z GAME A U M RATID 2.635E+05 2.949E-02 2.439E+04 2.741E+07 4.432E+01 1.276E+00 1.484E+00 3.641E+03 1.480E+03 4.066E-01 5.066E+00
STAGNATION CONDITIONS BEHIND BON SHOCK-REGION TO FROZEN EXPANSION-- FROZEN POST SHOCK
```

P RHO T H Z GAME A OT RN TIMI 2-972E+05 3-198E-02 2-537E+04 2-850E+07 1-276E+00 1-484E+00 3-713E+03 3-743E+07 2-540E-02 1-370E-04 AEDC REAL-AIR TAPE USED FOR UNSTEADY EXPANSION-IEXP=1 NO SOLUTION ON TAPE FOR THE CONDITIONS EVALUATE S/R= 37.090681 7 (6) Z141= 2.54208103E+00 PERFECT AIR RELATIONS USED FOR NUMERICAL INTEGRATION 5 CONDITIONS FOR EQUILIBRIUM EXPANSION P RHO T H S/R Z GAME A U H NRE 4.730E+06 4.146E-02 3.559E+03 6.461E+06 3.709E+01 L.115E+00 1.155E+03 7.500E+03 6.492E+00 3.162E+06 STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 EQUILIBRIUM EXPANSION -- EQUILIBRIUM POST SHOCK P RHO T H S/R Z GAME A IJ M LATID 2.181E+06 4.866E-01 9.044E+03 3.438E+07 4.675E+01 1.727E+00 1.189E+00 2.309E+03 6.390E+02 2.768E-01 1.174E+01 STAGNATION CONDITIONS BEHIND BOH SHOCK-REGION T5 EQUILIBRIUM EXPANSION -- EQUILIBRIUM POST SHOCK P RHO T H 2 GAME A QT RN TIMI 2.282E+06 5.056E-01 9.090E+03 3.459E+07 1.730E+00 1.190E+00 2.318E+03 1.261E+08 2.540E-02 4.122E-04 FOLLOHING EQUILIBRIUM CONDITIONS INCLUDE FLOW ATTN 5 CONDITIONS FOR EQUILIBRIUM EXPANSION P RHO T H S/R Z GAME A U M NRE 4.730E+04 4.146E-02 3.559E+03 6.461E+06 3.709F+01 1.115E+00 1.171E+00 1.155E+03 6.500E+03 5.627E+00 2.740E+06 STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK P R4D T H S/R Z GAME A U M RATIO 1.634E+06 4.396E-01 8.222E+03 2.740E+07 4.445E+01 1.575E+00 1.171E+00 2.086E+03 6.125E+02 2.936E-01 1.060E+01 STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TS EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK P RHO T H Z GAME A QT RN TIMI 1-718E+06 4-591E-01 8-263E+03 2-759E+07 1-578E+00 1-172E+00 2-094E+03 8-708E+07 2-540E-02 5-646E-04 ACCELERATION AIR CONDITIONS (REGION 20) AND PIO P20 RHD20 T20 H20 Z20 M20 P10 US10 MS10 RATID 4.730E+04 L.301E-02 7.170E+03 3.208E+07 1.766E+00 3.657E+00 6.792E+01 7.987E+03 2.300E+01 1.650E+01 ACCELERATION AIR FLOW PARAMETERS USING MIRELS THEORY

CONDITIONS BEHIND REFLECTED SHOCK AT SECONDARY DIAPH

P RHO T H S/R Z GAME A U M NRE 1-541E+07 4-721E+00 8-480E+03 1-989E+07 3-806E+01 1-341E+00 1-176E+C0 1-959E+03 0- 0- 0-

EXPANSION TUBE PHASE OF PROGRAM

INPUTS FOR EXPANSION TUBE PHASE

U5 P5 XAS DELU5 ISAV IEXP IREP NVEL IAC JAC 7.500E+03 0. 1.69BE+01 5.000E+02 2 1 1 B 50 50

5 CONDITIONS FOR FROZEN EXPANSION

P RHD T H S/R Z GAME A U M NRE 1.785E+02 2.444E-03 1.897E+02 2.185E+05 3.806E+01 1.341E+00 1.502E+00 3.312E+02 7.500E+03 2.264E+01 1.448E+06

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 5S FROZEN EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H S/R Z GAME A U M RATIO 1.258E+05 2.829E-02 8.234E+03 3.826E+07 5.344E+01 1.881E+00 1.164E+00 2.275E+03 6.477E+02 2.847E-01 1.158E+01

STAGNATION CONDITIONS BEHIND BOW SMOCK-REGION TO FROZEN EXPANSION--EQUILIBRIUM POST SMOCK

P R4D T H Z GAME A QT RN TIMI 1.318E+05 2.943E-02 8.282E+03 3.847E+07 1.884E+00 1.165E+00 2.284E+03 3.374E+07 2.540E-02 1.046E-04

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 5S FROZEN EXPANSION-- FROZEN POST SHOCK

P RMD T H S/R Z GAME A U N RATIO L-098E+05 1-208E-02 2-361E+04 2-719E+07 4-607E+01 1-341E+00 1-502E+00 3-696E+03 1-517E+03 4-105E-01 4-944E+00

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TO FROZEN EXPANSION-- FROZEN POST SHOCK

P RHO T H Z GAME A QT RN TIMT 1-243E+05 1-312E-02 2-461E+04 2-834E+07 1-341E+00 1-502E+00 3-773E+03 2-407E+07 2-540E-02 1-046E-04

AEDC REAL-AIR TAPE USED FOR UNSTEADY EXPANSION-IEXP=1

NO SOLUTION ON TAPE FOR THE CONDITIONS

S/R= 38.059235 2(4)= 2.54208103E+00

EVALUATE 7.61

PERFECT AIR RELATIONS USED FOR NUMERICAL INTEGRATION

5 CONDITIONS FOR EQUILIBRIUM EXPANSION

P RHO T H S/R Z GAME A U M NRE 5.576E+04 4.272E-02 3.919E+03 7.698E+06 3.806E+01 1.159E+00 1.205E+00 1.254E+03 7.500E+03 5.981E+00 3.011E+06

STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHO T H 5/R Z GAME A U M RATIO 2-247E+06 4-859E-01 9-196E+03 3-561E+07 4-716E+01 1-752E+00 1-192E+00 2-348E+03 6-591E+02 2-807E-01 1-138E+01

STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION TO EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK

P RHD T H 7 GAME A QT RN TIHI 2-355E+06 5-055E-01 9-246E+03 3-583E+07 1-755E+00 1-192E+00 2-357E+03 1-327E+08 2-540E-02 4-545E-04 FOLLOHING EQUILIBRIUM CONDITIONS INCLUDE FLOW ATTN 5 CONDITIONS FOR EQUILIBRIUM EXPANSION S/R GAME r KHU T H S/R Z GAME A U ∰ NRE 5-576E+04 4-272E-02 3-919E+03 7-698E+06 3-806E+01 1-159E+00 1-205E+00 1-254E+03 6-500E+03 5-184E+00 2-609E+06 STATIC CONDITIONS BEHIND BOW SHOCK - REGION 55 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK P RHO T H S/R Z GAME A U M RATIO L.665E+06 4.387E-01 8.367E+03 2.862E+07 4.491E+01 1.603E+00 1.174E+00 2.124E+03 6.329E+02 2.980E-01 1.027E+01 STAGNATION CONDITIONS BEHIND BOW SHOCK-REGION T5 EQUILIBRIUM EXPANSION--EQUILIBRIUM POST SHOCK P RHO T H Z GAME A QT RN TIMI 1.775E+06 4.587E-01 8.391E+03 2.883E+07 1.607E+00 1.175E+00 2.132E+03 9.251E+07 2.540E-02 6.244E-04 ACCELERATION AIR CONDITIONS (REGION 20) AND PIC-M20 P10 USIO MS10 220 P20 RH020 T20 H20 Z20 M20 P10 US10 MS10 RATIO 5.576E+04 [.523E-02 7.231E+03 3.210E+07 1.763E+00 3.642E+00 8.004E+01 7.990E+03 2.301E+01 1.639E+01 ACCELERATION AIR FLOW PARAMETERS USING MIRELS THEORY L/LMAX

PROGRAM LIMITATIONS AND UNCERTAINTIES

Limitations on the present program are those restrictions on the source of equilibrium, real-air, thermodynamic properties. The temperature range of both the AEDC real-air tape (ref. 9) and AEDC real-air curve-fit expressions (ref. 11) is 100 K to 15 000 K; however, the pressure range of the tape is greater than that of the curve-fit expressions for given values of entropy. Imperfect air (intermolecular force) effects are neglected in the curve-fit expressions; thus, discretion should be exercised in using these expressions at pressures greater than 10 MN/m² or so. If the lower temperature limit of the AEDC real-air tape is exceeded during the unsteady or steady flow expansion computation, perfect air relations are used to determine thermodynamic properties at these low temperatures. For this case, a statement is printed in the printout acknowledging that perfect air relations were used; thereby, the user is cautioned that the temperature-pressure range may be such that air condensation effects (see, for example, ref. 22) are significant and should be considered.

Primary sources of uncertainties are iteration convergence criteria, source of real-air thermodynamic properties, and computational procedure. To reduce uncertainties arising from usage of various iteration convergence tolerances, tolerances were constant for all iterations in the present study, being 0.1 percent. Real-air thermodynamic properties as obtained from the AEDC tape are believed to be representative of the state of the art in calculation of air properties. However, some differences exist between the AEDC tape and the AEDC curve-fit expressions. For a pressure range of 10 to 1000 kN/m² and a temperature range of 2000 K to 15 000 K, the maximum percentage errors in thermodynamic properties obtained from the curve-fit expressions, as compared with those from the AEDC tape, are (ref. 11):

a, percent.								٠													2.78
h, percent .																					
T, percent																					
Z*, percent																					
$\gamma_{ m E}$, percent		•					,													٠	≈5.00
ρ , percent																					

Because of the wide range of possible shock tube and expansion tube flow conditions and the large number of methods (combinations of inputs) contained within the present program for computing these flow conditions, a comprehensive study of program uncertainties is not feasible. Instead, computations for specific cases, representative of tests performed in the Langley expansion tube, are considered. Values of flow quantities in

regions 2 and 2s, obtained for various values of input $U_{s,1}$ (LB = 0; see appendix A) and using the AEDC real-air tape, were compared with those values calculated by using the program of reference 5. This comparison showed excellent agreement, as expected. For the case where p_2 is an input, the values of p_2 were obtained from the case where $U_{s,1}$ is an input. This cross-check showed exact agreement between the results.

Flow quantities in region ② where p_4 and T_4 are inputs were also compared with results from reference 5. For these comparisons, p_4 was equal to 34.5 MN/m², T_4 was equal to 300 K and to 600 K, and p_1 was varied from 0.07 to 689.5 kN/m². Both helium and hydrogen driver gases are considered. For the present program, the AEDC real-air curve-fit expressions (ISAV = 2; see appendix A) are used and 20 values of $U_{s,1}$ are used in generating the (p_2, U_2) curves. A 10-species $(e^-, Ar, N, N^+, N_2, O, O^+, O_2, NO, and NO^+)$ air model is employed in reference 5, the air composition by volume being 78.08 percent N_2 , 20.95 percent N_2 , and 0.97 percent Ar. This composition yields an undissociated molecular weight W_u of 28.97 in agreement with references 9 and 11. As expected, thermodynamic properties in region 4 were in perfect agreement between the two programs for both driver gases. The maximum uncertainties observed between flow quantities in region 2 and $U_{s,1}$, as determined from the present program and reference 5, are

p ₂ , percent	
$ ho_{f 2}^{-},$ percent	2.3
T ₂ , percent	2.6
h ₂ , percent	0.5
s_2W_u/R , percent	0.2
a ₂ , percent	1.6
$\mathbf{U_2}, \mathbf{percent} $	0.2
U _{s,1} , percent	0.5

The ratios of flow conditions in region (2) to conditions in region (1) presented in figure 18 are shown in figure 22 as a function of $U_{s,1}$. The results of figure 18 were calculated by use of the AEDC tape, whereas the results of figure 22 were calculated by use of the AEDC curve-fit expressions. Comparison of figures 18 and 22 shows p_2/p_1 , h_2/h_1 (which are relatively insensitive to variation in p_1), and s_2W_u/R are in good agreement for the two sources of real-air thermodynamic properties. However, agreement for ρ_2/ρ_1 and T_2/T_1 is poorer, differences up to approximately 10 percent occurring for the range of $U_{s,1}$ examined. This comparison implies that some shock tube parameters in regions (2s) and (2r) calculated by using the curve-fit expressions

may also contain relatively large uncertainties. Thus, the user of the present program should exercise discretion in using these expressions to calculate shock tube flow quantities.

Expansion tube flow quantities in regions (5), (5s), and (t5) are compared for the three methods of the present program and with the results of reference 5. The three methods of the present program, in terms of inputs ISAV and IEXP (see appendix A), are

Method	ISAV	IEXP
(1)	1	1
(2)	2	1
(3)	2	2

where ISAV = 1 denotes that the AEDC real-air tape is used to determine flow quantities in the expansion tube cycle and ISAV = 2 denotes that the AEDC real-air curve-fit expressions are used. For IEXP = 1, the required table of h as a function of a^{-1} for the unsteady expansion calculation is generated from the AEDC tape. This table is generated by using subroutine SLOW with inputs $s_A W_u/R$ and h, where h is varied from a maximum value of hA to a minimum value chosen to be 0.1 MJ/kg. This range of h is divided into increments (number of increments is input JAC with maximum of 300) and the numerical integration performed beginning with the upper limit hA. The integration by Simpson's Rule is terminated when a value of h is obtained that equates to ΔU of equation (21). For IEXP = 2, this table is generated by using the curve-fit expressions. The pressure is varied from a maximum value of p_A to a minimum value of either $p_{5,f}$ or $0.1~N/m^2$, whichever is largest. These values of p are inputs to subroutine SAVE, in conjunction with $s_A W_u/R$, and the corresponding values of h and a^{-1} are tabulated. The number of pressure increments used in generating this table is an input (maximum of 100). Method (1) (ISAV = IEXP = 1) is expected to be the most accurate method but requires more computer time primarily because of the time required for tape manipulation. Method (3) (ISAV = IEXP = 2) should contain the greatest uncertainty but has the smallest computer time. Method (2) represents a compromise between methods (1) and (3) and uses the AEDC tape only for the unsteady expansion calculations.

Flow quantities in regions (5), (5s), and (t5) were calculated with these three methods for the following basic inputs:

$$p_1 = 1.724 \text{ kN/m}^2$$

$$T_1 = 300 \text{ K}$$

 $U_{s,1} = 2.865 \text{ km/sec}$ $U_5 = 4, 5, 6, \text{ and } 7 \text{ km/sec}$

No shock reflection at the secondary diaphragm is considered. All quantities are based on the assumption of thermochemical-equilibrium flow throughout the expansion tube flow cycle. The results of methods (2) and (3) are compared with the results of method (1) in the following table. Also illustrated in this table is a comparison of method (1) with results from the program of reference 5 for a 10-species air model and with the same inputs as method (1). For methods (1) and (2), input JAC is equal to 300, and for method (3), input IAC is equal to 50. Fifty pressure increments are also used in the program of reference 5. Agreement between method (1) and the results from the program of reference 5 for all flow quantities of table I is good (generally within 0.5 percent). The results of

TABLE I.- PERCENT DIFFERENCE BETWEEN FLOW QUANTITIES IN REGIONS (5), (5s), AND (t5) AS CALCULATED BY METHODS (1), (2), AND (3) AND REFERENCE 5

Flow quantity	meth	ods (1)	ence be and (2) sec, of -	for	meth	nt differ nods (1) 5, km/s	and (3)	for	Percent difference between method (1) and reference 5 for U ₅ , km/sec, of -						
quantity	4	5	6	7	4	5	6	7	4	5	6	7			
р ₅	5.47	5.48	5.50	5.54	1.67	7.85	7.47	8.70	0.09	0.15	0.14	0.50			
ρ ₅	5.43	5.43	5.48	5.49	3.98	7.28	6.45	7.24	.18	.28	.22	.51			
т ₅	.04	.00	.08	.03	2.77	.45	1.01	1.51	.04	.06	.00	.05			
h ₅	.03	.05	.00	.03	.49	.30	.71	1.11	.00	.00	.08	.06			
z_5	.00	.00	.00	.00	.30	.00	.00	.00	.00	.00	.00	.00			
$^{\gamma}$ E,5	.00	.00	.00	.00	3.67	6.88	.68	.65	.00	.00	.00	.07			
a ₅	.05	.01	.01	00	.60	3.26	.19	.45	.01	.01	.04	.02			
М ₅	.05	.02	.01	.00	.59	3.26	.19	.43	.02	.02	.04	.00			
N _{Re,5}	5,44	5.46	5.47	5.44	5.87	7.02	5.88	6.26	.75	.38	.72	.00			
p _{5s}	5.32	5.40	5.46	5.47	3.79	7.22	4.28	7.19	.14	.20	.21	.51			
ρ _{5s}	4.63	4.61	5.25	5.18	1.96	6.46	.62	6.83	.11	.18	.25	.57			
T _{5s}	.87	.88	.53	.93	.74	.93	.59	1,03	.13	.07	.05	.05			
h _{5s}	.00	.00	.00	.00	.19	.07	.05	.04	.00	.00	.00	.00			
$s_{5s}W_u/R$.05	.12	.29	.48	.79	.17	.31	.46	.00	.05	.04	.02			
z _{5s}	.25	.15	.42	.75	.25	.15	.42	.75	.00	.00	.00	.00			
γ _{E,5s}	.91	.17	.26	.00	.99	.17	.26	.00	.08	.09	.00	.09			
25s	.86	.31	.23	.16	.80	.37	.29	.22	.00	.00	.00	.05			
P _{t,5}	5.37	5.42	5.65	5.49	3.85	7.31	6.54	7.24	.15	.23	.21	.50			
ρ _{t,5}	4.55	4.58	5.27	5.18	3.13	6.43	6.20	6.85	.14	.26	.27	.56			
T _{t,5}	.99	.86	.54	.93	.84	.92	.60	1.02	.13	.06	.03	.05			
h _{t,5}	.00	.00	.00	.00	.09	.07	.05	.04	.00	.00	.00	.00			

method (3) are within 8 percent or so of those of method (1) for the range of U_5 examined. (It should be noted that for a value of U_5 of 7 km/sec, the corresponding value of p_5 exceeded the range curve fitted in ref. 11.) Differences between method (1) and method (2) or (3) in table I are believed to be representative of the present program as applied to a wide range of practical expansion tube flow conditions.

Uncertainty in flow quantities is expected to be a function of the number of increments used for the numerical integration required for the unsteady expansion. Hence, inputs JAC and IAC for methods (2) and (3), respectively, were varied to examine uncertainties resulting from these inputs. Percentage differences for flow quantities in region 5 are shown for method (3) with various IAC in the following table. These differences were obtained by comparing results for given values of IAC to results obtained with the maximum value of 100. The inputs p_1 , T_1 , and $U_{s,1}$ are those considered in the previous comparison and the input U_5 is 7 km/sec; thereby, the maximum difference between h_A and h_5 or p_A and p_5 for this case is provided. To minimize computer time without sacrificing accuracy in calculated flow quantities, a value of IAC equal to 50 for method (3) is recommended for most cases.

Flow	IAC of -												
quantity	10	20	30	50									
p ₅	5.74	0.82	0.63	0.00									
ρ ₅	4.23	.62	.45	.00									
Т ₅	1.58	.22	.17	.00									
h ₅	1.65	.23	.18	.00									
Z ₅	.00	.00	.00	.00									
$\gamma_{\mathrm{E},5}$.07	.00	.00	.00									
a ₅	.77	.10	.08	.00									
M ₅	.07	.14	.07	.00									
N _{Re,5}	3.29	.39	.39	.00									

A similar comparison for method (2) was performed, where the maximum value of input JAC was 300. This comparison showed the maximum difference between flow quantities in region (5) for JAC equal to 25 and the maximum of 300 was less than 0.25 percent for U_5 equal to 7 km/sec. However, extending the velocity to 8 km/sec yielded differences up to 5.5 percent. Increasing input JAC from 25 to 50 diminished this difference to

less than 0.2 percent. (It should be noted that for U_5 equal to 8 km/sec, the temperature T_5 was 250 K; hence, these conditions did not exceed the limits of the AEDC realair tape.) Therefore, for methods (1) and (2), a value of JAC equal to 50 is recommended for most cases. More severe expansions from region (a) to region (5) than for this sample case may require larger values of JAC and IAC than recommended herein.

For the case where p_5 is an input (LF = 2; see appendix A), the values of p_5 calculated for methods (1) and (3) are, in turn, used as inputs. (The values from method (1) were used for LF = 2 and ISAV = IEXP = 1, and the values from method (3) were used for LF = 2 and ISAV = IEXP = 2.) This cross-check shows excellent agreement between the results.

The present program was run at conditions for which air behaves, approximately, as an ideal gas in all phases of the expansion tube cycle. Inputs for this case are

$$p_1 = 6.895 \text{ kN/m}^2$$
 $T_1 = 300 \text{ K}$
 $U_{s,1} = 500 \text{ m/sec}$
 $U_5 = 700, 900, \text{ and } 1100 \text{ m/sec}$

and the AEDC tape was used for the unsteady expansion. The purpose of this case was to compare flow quantities for a frozen expansion with those for a thermochemical equilibrium expansion. Flow quantities in region (5), (5s), and (t5) were observed to be within 2 percent between the frozen and equilibrium cases. Comparison of frozen flow quantities between the present program and the program of reference 5 showed agreement to worsen with increasing level of dissociation in region (A). Since the composition of the air in region (A) is calculated in reference 5, the corresponding frozen flow calculations of reference 5 are believed to be more accurate than those of the present program.

Flow quantities calculated in region 6 of the expansion tunnel were verified by manual calculations and usage of reference 9. The same subroutine (SNS; see appendix A) was used to obtain conditions in regions 6s and t6 as was used to obtain conditions in regions 5s and t5.

APPENDIX C

LANGLEY LIBRARY SUBROUTINE ITR1

Language: FORTRAN

Purpose: To solve the single equation of the form x = f(x) for one real root by the Newton-Raphson iteration method.

CALL ITR1 (X, DELTX, FOFX, E1, E2, MAXI, ICODE) Use:

An initial guess supplied by the user. On a normal return to the calling X

program from ITR1, X contains the root.

An increment supplied by the user so that $\frac{f(x + DELTX) - f(x)}{DELTX}$ is a DELTX reasonable approximation to the derivative of f(x).

FOFX A function subprogram to evaluate f(x).

E1Relative error criterion.

E2Absolute error criterion.

MAXI A maximum iteration count supplied by the user.

ICODE An integer supplied by ITR1 as an error code. This code should be

tested by the user on return to the calling program.

ICODE = 0: Normal return.

ICODE = 1: Maximum iteration exceeded.

ICODE = 2: Derivative = 0.

Restrictions: A function subprogram with a single argument x must be written by the user to evaluate f(x). The name given to the FOFX subprogram must appear in an EXTERNAL statement in the calling program.

The Newton-Raphson iteration technique (ref. (a) of this subroutine) is used Method: where

$$x_{n+1} = q_n + (1 - q) f(x_n)$$

$$q = \frac{a}{a - 1}$$

$$a = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

APPENDIX C

Accuracy: The iteration process is continued until either of two convergence criteria is satisfied. These criteria are given as follows:

If

$$|\mathbf{f}(\mathbf{x}_n)| \ge \epsilon_1$$

then

$$\left| \frac{f(\mathbf{x}_n) - \mathbf{x}_n}{f(\mathbf{x}_n)} \right| \le \epsilon_1 \tag{C1}$$

and if

$$|f(x_n)| < \epsilon_1$$

then

$$\left| f(\mathbf{x}_n) - \mathbf{x}_n \right| \le \epsilon_2 \tag{C2}$$

Reference: (a) Scarborough, James B.: Numerical Mathematical Analysis. Fourth ed.

Johns Hopkins Press, 1958, p. 192.

Storage: 1378 locations.

Subroutine date: August 1, 1968.

APPENDIX D

LANGLEY LIBRARY SUBROUTINE ITR2

Language: FORTRAN

Purpose: Given F(X) = 0, to find a value for X within a given epsilon of relative error in

a given interval (a,b).

Use: CALL ITR2 (X, A, B, DELTX, FOFX, E1, E2, MAXI, ICODE)

X The root.

A The lower bound on X. This value is used by ITR2 as an initial guess.

B The upper bound on X. This value is used by ITR2 as a final guess if

the entire interval is scanned.

DELTX ΔX , the size of the scanning interval.

FOFX The name of a function subprogram to evaluate F(X).

E1 Relative error criterion.

E2 Absolute error criterion.

MAXI A maximum iteration count supplied by the user.

ICODE An integer supplied by ITR2 as an error code. This code should be

tested by the user on return to the calling program.

ICODE = 0: Normal return

ICODE = 1: Maximum iterations are exceeded

ICODE = 2: DELTX = 0, or negative

ICODE = 3: a root cannot be found within the given bounds

ICODE = 4: A > B

Restrictions: Make A < B, ΔX positive. A function subprogram with a single argument X

must be written by the user to evaluate F(X). The name of this subpro-

gram, FOFX, must appear in an EXTERNAL statement of the calling

program.

APPENDIX D

Method: The given function F(X) is evaluated at a given starting point a and at intervals of a specified ΔX thereafter, up to and including a specified end point b. A change of sign of the function across a ΔX interval indicates a possible root in that interval. The interval is then halved successively toward F(X) = 0 until the prescribed accuracy is satisfied. The given function F(X) is evaluated once for each halving step.

If the given function is expected to have more than one root between the prescribed starting and end points, it is suggested that a sufficiently small ΔX be given such that no more than one root be present within a ΔX interval. A normal return is given upon the location of the first root from the starting point a. Additional roots must be located by new entries into the subroutine using a new starting point a which is just beyond the previous root.

Accuracy: The iteration process is continued until either of two convergence criteria is satisfied. These criteria are

If

$$|X_i| > \epsilon_1$$

then

$$\left|\frac{X_i - X_{i-1}}{X_i}\right| \le \epsilon_1$$

and if

$$|X_i| \le \epsilon_1$$

then

$$|X_i - X_{i-1}| \le \epsilon_2$$

Reference: Scarborough, James B.: Numerical Mathematical Analysis. Fourth ed. John Hopkins Press, 1958.

Storage: 2608 locations.

APPENDIX E

LANGLEY LIBRARY SUBROUTINE FTLUP

Language: FORTRAN

<u>Purpose</u>: Computes y = F(x) from a table of values using first- or second-order interpolation. An option to give y a constant value for any x is also provided.

Use: CALL FTLUP (X, Y, M, N, VARI, VARD)

X The name of the independent variable x.

Y The name of the dependent variable y = f(x).

M The order of interpolation (an integer)

M = 0 for y a constant as explained in the note below.

M = 1 or 2. First or second order if VARI is strictly increasing (not equal).

M = -1 or -2. First or second order if VARI is strictly decreasing (not equal).

N The number of points in the table (an integer).

VARI The name of a one-dimensional array which contains the N values of the independent variable.

VARD The name of a one-dimensional array which contains the N values of the dependent variable.

Note that VARD(I) corresponds to VARI(I) for $I=1,2,\ldots,N$. For M=0 or $N\leq 1$, y=F(VARI(1)) for any value of x. The program extrapolates.

Restrictions: All the numbers must be floating point. The values of the independent variable x in the table must be strictly increasing or strictly decreasing. The following arrays must be dimensioned by the calling program as indicated: VARI(N), VARD(N).

Accuracy: A function of the order of interpolation used.

APPENDIX E

- References: (a) Nielson, Kaj L.: Methods in Numerical Analysis. Macmillan Co., c.1956, pp. 87-91.
 - (b) Milne, William Edmund: Numerical Calculus. Princeton Univ. Press, 1949, pp. 69-73.

Storage: 4308 locations.

Error condition: If the VARI values are not in order, the subroutine will print "TABLE BELOW OUT OF ORDER FOR FTLUP AT POSITION XXX TABLE IS STORED IN LOCATION XXXXXX" (absolute). It then prints the contents of VARI and VARD and stops the program.

Subroutine date: September 12, 1969.

APPENDIX F

LANGLEY LIBRARY SUBROUTINE DISCOT

Language: FORTRAN

Purpose: DISCOT performs single or double interpolation for continuous or discontinuous functions. Given a table of some function y with two independent variables, x and z, this subroutine performs K_x th- and K_z th-order interpolation to calculate the dependent variable. In this subroutine all single-line functions are read in as two separate arrays and all multiline functions are read in as three separate arrays; that is,

$$x_i$$
 (i = 1,2,...,L)

$$y_i$$
 (i = 1,2,...,M)

$$z_k$$
 (k = 1,2,...,N)

Use: CALL DISCOT (XA,ZA,TABX,TABY,TABZ,NC,NY,NZ,ANS)

XA The x argument

ZA The z argument (may be the same name as x on single lines)

TABX A one-dimensional array of x values

TABY A one-dimensional array of y values

TABZ A one-dimensional array of z values

NC A control word that consists of a sign (+ or -) and three digits. The control word is formed as follows:

- (1) If NX = NY, the sign is negative. If NX ≠ NY, then NX is computed by DISCOT as NX = NY/NZ and the sign is positive and may be omitted if desired.
- (2) A one in the hundreds position of the word indicates that no extrapolation occurs above z_{max} . With a zero in this position, extrapolation occurs when $z > z_{max}$. The zero may be omitted if desired.
- (3) A digit (1 to 7) in the tens position of the word indicates the order of interpolation in the x-direction.

APPENDIX F

(4) A digit (1 to 7) in the units position of the word indicates the order of interpolation in the z-direction

NY The number of points in y array

NZ The number of points in z array

ANS The dependent variable y

Restrictions: See rule (5c) of section "Method" for restrictions on tabulating arrays and discontinuous functions. The order of interpolation in the x- and z-directions may be from 1 to 7. The following subprograms are used by DISCOT: UNS, DISSER, LAGRAN.

Method: Lagrange's interpolation formula is used in both the x- and z-directions for interpolation. This method is explained in detail in reference (a) of this subroutine. For a search in either the x- or z-direction, the following rules are observed:

(1) If $x < x_1$, the routine chooses the following points for extrapolation:

$$x_1, x_2, \dots, x_{k+1}$$
 and y_1, y_2, \dots, y_{k+1}

(2) If $x > x_n$, the routine chooses the following points for extrapolation:

$$x_{n-k}, x_{n-k+1}, \dots, x_n$$
 and $y_{n-k}, y_{n-k+1}, \dots, y_n$

(3) If $x \le x_n$, the routine chooses the following points for interpolation: When k is odd,

$$i - \frac{k+1}{2}$$
, $i - \frac{k+1}{2} + 1$, ..., $i - \frac{k+1}{2} + k$ and $y - \frac{k+1}{2}$, $i - \frac{k+1}{2} + 1$, ..., $y - \frac{k+1}{2} + k$

When k is even,

$$x_{i-\frac{k}{2}, x_{i-\frac{k}{2}+1}, \dots, x_{i-\frac{k}{2}+k}}$$
 and $y_{i-\frac{k}{2}, y_{i-\frac{k}{2}+1}, \dots, y_{i-\frac{k}{2}+k}}$

- (4) If any of the subscripts in rule (3) become negative or greater than n (number of points), rules (1) and (2) apply. When discontinuous functions are tabulated, the independent variable at the point of discontinuity is repeated.
- (5) The subroutine will automatically examine the points selected before interpolation and if there is a discontinuity, the following rules apply. Let x_d and x_{d+1} be the point of discontinuity.

APPENDIX F

(a) If $x \le x_d$, points previously chosen are modified for interpolation as shown:

$$x_{d-k}, x_{d-k+1}, \dots, x_d$$
 and $y_{d-k}, y_{d-k+1}, \dots, y_d$

(b) If $x > x_d$, points previously chosen are modified for interpolation as shown:

$$x_{d+1}, x_{d+2}, \dots, x_{d+k}$$
 and $y_{d+1}, y_{d+2}, \dots, y_{d+k}$

- (c) When tabulating discontinuous functions, there must always be k+1 points above and below the discontinuity in order to get proper interpolation.
- (6) When tabulating arrays for this subroutine, both independent variables must be in ascending order.
- (7) In some engineering programs with many tables, it is quite desirable to read in one array of x values that could be used for all lines of a multiline function or different functions. Even though this situation is not always applicable, the subroutine has been written to handle it. This procedure not only saves much time in preparing tabular data, but also can save many locations previously used when every y coordinate had to have a corresponding x coordinate. Another additional feature that may be useful is the possibility of a multiline function with no extrapolation above the top line.

Accuracy: A function of the order of interpolation used.

Reference: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. Macmillan Co., c.1956.

Storage: 5558 locations.

Subprograms used: UNS 40₈ locations.

DISSER 1108 locations.

LAGRAN 558 locations.

Subroutine date: August 1, 1968.

REFERENCES

- 1. Trimpi, Robert L.: A Preliminary Theoretical Study of the Expansion Tube, A New Device for Producing High-Enthalpy Short-Duration Hypersonic Gas Flows. NASA TR R-133, 1962.
- 2. Trimpi, Robert L.; and Callis, Linwood B.: A Perfect-Gas Analysis of the Expansion Tunnel, A Modification to the Expansion Tube. NASA TR R-223, 1965.
- 3. Trimpi, Robert L.: A Theoretical Investigation of Simulation in Expansion Tubes and Tunnels. NASA TR R-243, 1966.
- 4. Norfleet, Glenn D.; and Loper, F. C.: A Theoretical Real-Gas Analysis of the Expansion Tunnel. AEDC-TR-66-71, U.S. Air Force, June 1966. (Available from DDC as AD 633 656.)
- Miller, Charles G., III: A Program for Calculating Expansion-Tube Flow Quantities for Real-Gas Mixtures and Comparison With Experimental Results. NASA TN D-6830, 1972.
- 6. Mirels, Harold: Test Time in Low-Pressure Shock Tubes. Phys. Fluids, vol. 6, no. 9, Sept. 1963, pp. 1201-1214.
- 7. Mirels, Harold: Shock Tube Test Time Limitation Due to Turbulent-Wall Boundary Layer. AIAA J., vol. 2, no. 1, Jan. 1964, pp. 84-93.
- 8. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors (Second Revision). NASA SP-7012, 1973.
- 9. Neel, C. A.; and Lewis, Clark H.: Interpolations of Imperfect Air Thermodynamic Data. I. At Constant Entropy. AEDC-TDR-64-183, U.S. Air Force, Sept. 1964. (Available from DDC as AD 605 471.)
- Miller, Charles G., III; and Wilder, Sue E.: Real-Air Data Reduction Procedures
 Based on Flow Parameters Measured in the Test Section of Supersonic and Hyper sonic Facilities. NASA TN D-6618, 1972.
- Lewis, Clark H.; and Burgess, Ernest G., III: Empirical Equations for the Thermodynamic Properties of Air and Nitrogen to 15,000° K. AEDC-TDR-63-138, U.S. Air Force, July 1963.
- 12. Gaydon, A. G.; and Hurle, I. R.: The Shock Tube in High Temperature Chemical Physics. Reinhold Pub. Corp., 1963.
- 13. Connor, Laurence N., Jr.; and Andersen, Rolf P.: Real Gas Effects on Shock-Tube Flow Nonuniformity. AIAA J., vol. 8, no. 1, Jan. 1970, pp. 175-177.

- 14. Jones, Jim J.; and Moore, John A.: Exploratory Study of Performance of the Langley Pilot Model Expansion Tube With a Hydrogen Driver. NASA TN D-3421, 1966.
- 15. Miller, Charles G.: Flow Properties in Expansion Tube With Helium, Argon, Air, and CO₂. AIAA J., vol. 12, no. 4, Apr. 1974, pp. 564-566.
- 16. Yos, Jerrold M.: Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30,000° K. Tech. Mem. RAD-TM-63-7 (Contract AF33(616)-7578), AVCO Corp., Mar. 22, 1963.
- 17. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rep. 1135, 1953. (Supersedes NACA TN 1428.)
- 18. Zoby, Ernest V.: Empirical Stagnation-Point Heat-Transfer Relation in Several Gas Mixtures at High Enthalpy Levels. NASA TN D-4799, 1968.
- 19. Grose, William L.; and Nealy, John E.: Imperfect Gas Effect in Real Hydrogen Drives. AIAA J., vol. 8, no. 6, June 1970, pp. 1164-1165.
- 20. Olstad, Walter B.; Kemper, Jane T.; and Bengtson, Roger D.: Equilibrium Normal-Shock and Stagnation-Point Properties of Helium for Incident-Shock Mach Numbers From 1 to 30. NASA TN D-4754, 1968.
- 21. Miller, Charles G., III: Langley Hotshot Tunnel Operations With Helium at Mach Numbers in Excess of 30. NASA TN D-5901, 1970.
- 22. Daum, Fred L: Air Condensation in a Hypersonic Wind Tunnel. AIAA J., vol. 1, no. 5, May 1963, pp. 1043-1046.

(a) Prior to diaphragm rupture.

(b) Incident (moving) normal shock in test gas.

(c) Standing normal shock at test model.

(d) Reflected normal shock from end wall.

Figure 1.- Sketches illustrating shock-tube regions of interest: Regions (2), (2s), and (2r).

Figure 2.- Schematic diagram of expansion tunnel flow sequence.

Figure 3.- Velocity U_3 as a function of pressure p_3 for isentropic unsteady expansion of helium and hydrogen driver gases for $p_4 = 68.95 \text{ MN/m}^2$ and various T_4 ; velocity U_2 as a function of pressure p_2 for incident normal shock in real air.

(b) Helium driver gas with $T_4 = 600$ K. Figure 3.- Continued.

(c) Helium driver gas with $T_4 = 10~000~\mathrm{K}.$ Figure 3.- Continued.

(d) Hydrogen driver gas with $T_4 = 300$ K. Figure 3.- Continued.

(e) Hydrogen driver gas with $T_4 = 600$ K. Figure 3.- Concluded.

Figure 4.- Incident normal shock velocity as a function of ratio of driver gas pressure to quiescent test air pressure for helium and hydrogen driver gases. $T_4 = 600 \text{ K}$.

Figure 5.- Shock tube performance for real-air test gas and helium and hydrogen driver gases over range of T_4 . $p_4=68.95~MN/m^2$.

(b) Helium driver gas with 1000 K \leqq $T_4 \leqq$ 12 000 K. Figure 5.- Continued.

(c) Hydrogen driver gas with 300 K \leq T $_4 \leq$ 600 K. Figure 5.- Concluded.

(a) Static pressure in region 5.

Figure 6.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming no shock reflection at secondary diaphragm. $p_1 = 0.6895 \text{ kN/m}^2$.

(b) Static density in region (5).

Figure 6.- Continued.

(c) Static temperature in region (5).

Figure 6.- Continued.

(d) Mach number in region 5.

Figure 6.- Continued.

(e) Unit Reynolds number in region 5.

Figure 6.- Continued.

(f) Normal-shock density ratio.

Figure 6.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 6.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 6.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 6.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 6.- Continued.

125

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm. Figure 6.- Continued.

(1) Quiescent acceleration air pressure in region \bigcirc 0.

Figure 6.- Concluded.

Figure 7.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming no shock reflection at secondary diaphragm. $p_1 = 3.45 \ kN/m^2$.

(b) Static density in region (5).

Figure 7.- Continued.

(c) Static temperature in region (5).

Figure 7.- Continued.

(d) Mach number in region 5.
Figure 7.- Continued.

(e) Unit Reynolds number in region 5.

Figure 7.- Continued.

(f) Normal shock density ratio.

Figure 7.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 7.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 7.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 7. - Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 7.- Continued.

137

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 7.- Continued.

(1) Quiescent acceleration air pressure in region (10).

Figure 7. - Concluded.

Figure 8.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming no shock reflection at secondary diaphragm. $p_1 = 6.90 \text{ kN/m}^2$.

(b) Static density in region (5).

Figure 8. - Continued.

(c) Static temperature in region (5).

Figure 8.- Continued.

(d) Mach number in region (5).

Figure 8.- Continued.

(e) Unit Reynolds number in region (5).

Figure 8.- Continued.

(f) Normal shock density ratio.

Figure 8.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 8.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 8.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 8.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 8.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 8.- Continued.

(1) Quiescent acceleration air pressure in region \bigcirc 0.

Figure 8.- Concluded.

Figure 9.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming no shock reflection at secondary diaphragm. $p_1 = 34.47 \text{ kN/m}^2$.

(b) Static density in region (5).

Figure 9.- Continued.

(c) Static temperature in region (5).

Figure 9.- Continued.

(d) Mach number in region 5.
Figure 9.- Continued.

(e) Unit Reynolds number in region \bigcirc .

Figure 9.- Continued.

(f) Normal shock density ratio.

Figure 9.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 9. - Continued.

(h) Stagnation density behind normal bow shock.

Figure 9.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 9.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 9.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 9.- Continued.

(1) Quiescent acceleration air pressure in region \bigcirc . Figure 9.- Concluded.

(a) Static pressure in region (5).

Figure 10.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming no shock reflection at secondary diaphragm. $p_1 = 68.95 \text{ kN/m}^2$.

(b) Static density in region 5.

Figure 10.- Continued.

(c) Static temperature in region (5).

Figure 10.- Continued.

(d) Mach number in region 5.

Figure 10.- Continued.

(e) Unit Reynolds number in region 5. Figure 10.- Continued.

(f) Normal shock density ratio.

Figure 10.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 10.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 10. - Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 10. - Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 10.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 10. - Continued.

(1) Quiescent acceleration air pressure in region 10. Figure 10. - Concluded.

(a) Static pressure in region (5).

Figure 11.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming no shock reflection at secondary diaphragm. $p_1 = 344.74 \text{ kN/m}^2$.

(b) Static density in region 5.

Figure 11.- Continued.

(c) Static temperature in region 5.

Figure 11.- Continued.

(d) Mach number in region 5.

Figure 11.- Continued.

(e) Unit Reynolds number in region (5).

Figure 11.- Continued.

(f) Normal shock density ratio.

Figure 11.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 11.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 11.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 11.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 11.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 11.- Continued.

(1) Quiescent acceleration air pressure in region \bigcirc . Figure 11.- Concluded.

(a) Static pressure in region (5).

Figure 12.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming a totally reflected shock at the secondary diaphragm. $p_1 = 689.5 \text{ N/m}^2$.

(b) Static density in region \bigcirc 5.

Figure 12.- Continued.

(c) Static temperature in region (5).

Figure 12.- Continued.

(d) Mach number in region 5.
Figure 12.- Continued.

(e) Unit Reynolds number in region (5).

Figure 12.- Continued.

(f) Normal shock density ratio.

Figure 12.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 12.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 12.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 12. - Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 12.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 12.- Continued.

(l) Quiescent acceleration air pressure in region \bigcirc 0.

Figure 12.- Concluded.

Figure 13.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming a totally reflected shock at the secondary diaphragm. $p_1 = 3.45 \text{ kN/m}^2$.

(b) Static density in region (5). Figure 13.- Continued.

(c) Static temperature in region 5.

Figure 13.- Continued.

(d) Mach number in region 5.

Figure 13.- Continued.

(e) Unit Reynolds number in region \bigcirc .

Figure 13.- Continued.

(f) Normal shock density ratio.

Figure 13.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 13.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 13.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 13.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 13.- Continued.

209

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 13.- Continued.

(l) Quiescent acceleration air pressure in region \bigcirc 0.

Figure 13.- Concluded.

Figure 14.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming a totally reflected shock at the secondary diaphragm. $p_1 = 6.90 \text{ kN/m}^2$.

(b) Static density in region (5).

Figure 14.- Continued.

(c) Static temperature in region (5).

Figure 14.- Continued.

(d) Mach number in region 5.
Figure 14.- Continued.

(e) Unit Reynolds number in region (5).

Figure 14.- Continued.

(f) Normal shock density ratio.

Figure 14.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 14.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 14.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 14.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 14.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 14.- Continued.

(1) Quiescent acceleration air pressure in region (10).
Figure 14.- Concluded.

Figure 15.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming a totally reflected shock at the secondary diaphragm. $p_1 = 34.47 \text{ kN/m}^2$.

(b) Static density in region \bigcirc 5.

Figure 15.- Continued.

(c) Static temperature in region (5).

Figure 15.- Continued.

(d) Mach number in region 5. Figure 15.- Continued.

(e) Unit Reynolds number in region (5).

Figure 15.- Continued.

(f) Normal shock density ratio.

Figure 15.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 15.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 15.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 15.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 15.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 15.- Continued.

(1) Quiescent acceleration air pressure in region (10).
Figure 15.- Concluded.

Figure 16.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming a totally reflected shock at the secondary diaphragm. $p_1 = 68.95 \, kN/m^2$.

(b) Static density in region (5).

Figure 16.- Continued.

(c) Static temperature in region 5.

Figure 16.- Continued.

(d) Mach number in region 5.

Figure 16.- Continued.

(e) Unit Reynolds number in region (5).

Figure 16.- Continued.

(f) Normal shock density ratio.

Figure 16.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 16.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 16.- Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 16.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 16.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 16.- Continued.

(1) Quiescent acceleration air pressure in region \bigcirc . Figure 16.- Concluded.

Figure 17.- Various expansion tube flow parameters for real air in thermochemical equilibrium as a function of flow velocity and assuming a totally reflected shock at the secondary diaphragm. $p_1 = 344.74 \text{ kN/m}^2$.

(b) Static density in region \bigcirc .

Figure 17.- Continued.

(c) Static temperature in region 5.

Figure 17.- Continued.

(d) Mach number in region (5).

Figure 17.- Continued.

(e) Unit Reynolds number in region 5. Figure 17.- Continued.

(f) Normal shock density ratio.

Figure 17.- Continued.

(g) Stagnation pressure behind normal bow shock.

Figure 17.- Continued.

(h) Stagnation density behind normal bow shock.

Figure 17. - Continued.

(i) Stagnation temperature behind normal bow shock.

Figure 17.- Continued.

(j) Stagnation enthalpy behind normal bow shock.

Figure 17.- Continued.

(k) Stagnation-point convective heat-transfer rate to sphere having radius of 2.54 cm.

Figure 17.- Continued.

(1) Quiescent acceleration air pressure in region (10).
Figure 17.- Concluded.

Figure 18.- Various nondimensionalized flow parameters in region (2) as a function of incident normal shock velocity.

(b) Static density, ρ_2/ρ_1 .

Figure 18.- Continued.

(c) Static temperature, T_2/T_1 . Figure 18.- Continued.

(d) Static enthalpy, h_2/h_1 . Figure 18.- Continued.

(e) Entropy, s_2W_u/R .

Figure 18.- Concluded.

Figure 19.- Static pressure in region $\bigcirc{5}$ as a function of air flow velocity for $p_1=3.45~kN/m^2$ and various incident normal-shock velocities.

(c) $U_{s,1} = 3.6 \text{ km/sec.}$

Figure 19.- Continued.

(d) $U_{s,1} = 4.5 \text{ km/sec.}$ Figure 19.- Concluded.

(a) Ideal time interval between arrival of incident normal shock into region (10) and acceleration-air—test-air interface.

Figure 20.- Acceleration air flow quantities as a function of distance downstream from secondary diaphragm for $p_1 = 3.45 \text{ kN/m}^2$ and $U_{s,1} = 2.85 \text{ km/sec}$.

(b) Time interval between arrival of incident normal shock into region (10) and acceleration-air—test-air interface.

Figure 20.- Continued.

(c) Nondimensionalized distance between incident normal shock into region (10) and acceleration-air—test-air interface.

Figure 20.- Continued.

(d) Ratio of incident normal shock into region (10) to acceleration-air—test-air interface velocity.

Figure 20. - Concluded.

Figure 21.- Various expansion tunnel flow quantities as a function of effective area ratio.

Figure 22.- Various nondimensional flow parameters in region (2) as a function of incident normal-shock velocity. (Predicted by using curve-fit expressions of ref. 11.)

Figure 22.- Continued.

(c) Static temperature, T_2/T_1 .

Figure 22.- Continued.

(d) Static enthalpy, h_2/h_1 . Figure 22.- Continued.

 s_2W_u/R

Figure 22.- Concluded.